The synergistic combination of the GO-PEI-miR-214 inhibitor and CDDP chemotherapy showed significant cell death. In a xenograft mouse model, the GO-PEI-miR-214 inhibitor significantly inhibited tumor volume growth. This study indicates the potential of functionalized GO-PEI as a vehicle for miRNA inhibitor delivery to treat osteosarcoma with low toxicity and miR-214 can be a good target for osteosarcoma therapy. This study indicates the potential of functionalized GO-PEI as a vehicle for miRNA inhibitor delivery to treat osteosarcoma with low toxicity and miR-214 can be a good target for osteosarcoma therapy. Low bioavailability and poor permeability of the blood-brain barrier are problematic when delivering therapeutic agents and particularly anti-human immunodeficiency virus therapy to the central nervous system. The intranasal route offers an alternative for central nervous system delivery. Cubosomes have been reported as helpful vehicles for intranasal delivery of therapeutics to enable brain targeting. In this study, we aimed to develop the intranasal cubosomal thermogelling dispersion of saquinavir mesylate for central nervous system delivery. The Box-Behnken design was applied to study the effect of monoolein, Poloxamer 407, and polyvinyl alcohol as independent factors and the particle size, entrapment efficiency, gelation temperature, and stability index as responses. The optimized cubosomes were evaluated using transmission electron microscopy, ex vivo permeation, and in vivo pharmacokinetics. The optimized formula consisting of monoolein (8.96%), Poloxamer 407 (17.45%), and polyvinyl alcohol (7.5%) was prepared and evaluated. Higher values for the steady-state flux, permeability coefficient, and enhancement factor were observed for the cubosomal thermogelling dispersion of saquinavir during ex vivo permeation in comparison with an aqueous suspension of saquinavir. From the pharmacokinetic profile, the relative bioavailability for the intranasal optimized formula was approximately 12-fold higher when compared with oral aqueous suspension and 2.5-fold greater when compared to the intranasal aqueous suspension of saquinavir. Overall, the saquinavir-loaded cubosomal thermogelling formulation is promising for central nervous system delivery by intranasal administration. Overall, the saquinavir-loaded cubosomal thermogelling formulation is promising for central nervous system delivery by intranasal administration. In this in-vitro study, we designed a 3D printed composite of zinc oxide (ZnO) nanoparticles (NPs) with photocatalytic activities encapsulated within hydrogel (alginate) constructs, for antibacterial purposes applicable towards wound healing. We primarily sought to confirm the mechanical properties and cell compatibility of these ZnO NP infused scaffolds. The antibacterial property of the ZnO NPs was confirmed by hydroxyl radical generation using ultraviolet (U.V.) photocatalysis. Titanium dioxide (TiO ), a well-known antibacterial compound, was used as a positive control (1% w/v) for the ZnO NP-based alginate constructs and their antibacterial efficacies compared. Among the ZnO group, 3D printed gels containing 0.5% and 1% w/v of ZnO were analyzed and compared with manually casted samples via SEM, swelling evaluation, and rheological analysis. Envisioning an in-vivo application for the 3D printed ZnO NP-based alginates, we studied their antibacterial properties by bacterial broth testing, cytocompatibilThe customization of 3D printed alginates containing antibacterial ZnO NPs leads to an alternative that allows accessible mobility of molecular exchange required for improving chronic wound healing. This scaffold can provide a cost-effective and durable antibacterial treatment option. β-glucans are chiral polysaccharides with well-defined immunological properties and supramolecular wrapping ability of its chiral feature. However, the exploitation of chiral properties of these nanoparticles in drug delivery systems was seldom conducted. β-glucan molecules with different chain lengths were extracted from yeast and thereafter modified. In a conformation transition process, these β-glucan molecules were then self-assembled with anti-cancer drug doxorubicin into nanoparticles to construct drug delivery systems. The chiral interactions between the drug and carriers were revealed by circular dichroism spectra, ultraviolet and visible spectrum, fourier transform infrared spectroscopy, dynamic light scattering and transmission electron microscope. The immune-potentiation properties of modified β-glucan nanoparticles were evaluated by analysis of the mRNA expression in RAW264.7 cell model. Further, the antitumor efficacy of the nanoparticles against the human breast cancer were studied in MCF-7 cell model by cellular uptake and cytotoxicity experiments. β-glucan nanoparticles can activate macrophages to produce immune enhancing cytokines (IL-1β, IL-6, TNF-α, IFN-γ). A special chirality of the carriers in diameter of 50~160 nm can also associate with higher drug loading ability of 13.9% ~38.2% and pH-sensitive release with a change of pH from 7.4 to 5.0. Cellular uptake and cytotoxicity experiments also prove that the chiral-active β-glucan nanoparticles can be used in anti-cancer nanomedicine. This work demonstrates that β-glucans nanoparticles with special chiral feature which leading to strong immunopotentiation ability and high drug loading efficiency can be developed as a novel type of nanomedicine for anti-cancer treatment. This work demonstrates that β-glucans nanoparticles with special chiral feature which leading to strong immunopotentiation ability and high drug loading efficiency can be developed as a novel type of nanomedicine for anti-cancer treatment. To prepare xanthatin (XA)-loaded polydopamine (PDA) nanoparticles (PDA-XA-NPs) and to investigate their adhesion and bioavailability. PDA-XA-NPs were synthesized and characterized using transmission electron microscopy, zeta potential analysis and encapsulation efficiency analysis. https://www.selleckchem.com/screening-libraries.html Their in vitro release kinetics and inhibitory effects on gastric cancer were studied. The adhesion of PDA-XA-NPs was evaluated by in vivo imaging atlas. The pharmacokinetics of PDA-XA-NPs and XA was compared. PDA-XA-NPs had a spherical shape, a particle size of about 380 nm, an encapsulation efficiency of (82.1 ± 0.02) % and a drug loading capacity of (5.5 ± 0.1)%. The release of PDA-XA-NPs in PBS was stable and slow, without being affected by pH. The adhesion capacity of PDA-XA-NPs for mucin was significantly higher than that of bulk drug. The gastric mucosal retention of PDA-XA-NPs reached 89.1% which significantly exceeded that of XA. In vivo imaging showed that PDA-XA-NPs targeting the stomach were retained for a period of time.