https://www.selleckchem.com/products/sch-900776.html Generally, in Nigeria dumpsites are open and elevate the pollution by increasing the total environment contamination level. This affects not only the site of dumpsites but also the surrounding buildings and area. In the present work, indoor radon activity concentration is tested inside some buildings in the vicinity of dumpsites in Lagos, Nigeria. A passive technique with CR-39 detectors is used. Different buildings around different eight dumpsites were chosen. Radon concentration had ranged from 16.00 ± 3 to 931.00 ± 186 Bqm-3 in the dumpsites. With Mean concentrations range from 120 ± 24 at OKE-ODO to 334 ± 67, at Solus-4 respectively. The present results explain that 63% of the radon activity concentration in indoor air around the selected dumpsites at Lagos city in Nigeria is below the allowed limit from ICRP 200 Bq m-3 while 37% is more than this limit. Based on the measured radon concentration, the annual effective dose and cancer risk are evaluated. The range of ELC is from 242 to 14086 with mean value 3114 ± 1111.The advances of laser-driven electron acceleration offer the promise of great reductions in the size of high-energy electron accelerator facilities. Accordingly, it is desirable to design compact radiation shielding for such facilities. A key component of radiation shielding is the high-energy electron beam dump. In an effort to optimize the electron beam dump design, different material combinations have been simulated with the FLUKA Monte Carlo code in the range of 1-40 GeV. The studied beam dump configurations consist of alternating layers of high-Z material (lead or iron) and low-Z material (high-density concrete or borated polyethylene) in either three-layer or five-layer structures. The designs of various beam dump configuration have been compared and it has been found that the iron and concrete stacking in a three-layer structure with a thick iron layer results in the lowest dose at 1, 10, a