https://www.selleckchem.com/products/apx-115-free-base.html Communicated by Ramaswamy H. Sarma.This study was designed to identify novel circular RNAs and the related regulatory axis to provide research targets for the diagnosis and treatment of breast cancer. The circular RNA expression microarray "GSE101123" related to breast cancer was downloaded from the Gene Expression Omnibus database. The differentially expressed circular RNAs between tumor and normal samples were screened using Limma package. The targeted microRNAs of the differentially expressed circular RNAs and the targeted messenger RNAs of the microRNAs were predicted using miRanda and miRWalk, respectively, and a circular RNAs-microRNAs-messenger RNAs network was constructed. Then, functional enrichment analysis, protein-protein interaction network construction, and drug-gene interaction analysis were conducted for the messenger RNAs. A total of 11 differentially expressed circular RNAs were identified between the breast cancer and normal samples, of which 3 were upregulated, while 8 were downregulated. The circular RNA-microRNA-messenger RNA network contained 1 circular RNA (hsa_circ_0000376), 2 microRNAs (miR-1285-3p and miR-1286), and 353 messenger RNAs. The protein-protein interaction network contained 150 nodes and 240 interactions. The hub genes in the protein-protein interaction network were all targeted messenger RNAs of miR-1285-3p that were significantly enriched in the ubiquitin-proteasome system, apoptosis, cell cycle arrest-related pathways, and cancer-related pathways involving SMAD specific E3 ubiquitin protein ligase 1, β-transducin repeat containing E3 ubiquitin protein ligase, tumor protein P53 among others. Twenty-two drugs were predicted to target 4 messenger RNAs, including tumor protein P53. A novel circular RNA, hsa_circ_0000376, was identified in breast cancer that may act as a sponge targeting miR-1285-3p expression which through its target genes, SMURF1, BTRC, and TP53, may fu