Hence, chance in the final phagosomal pH introduces unpredictability to the outcome of the macrophage-microbe, which implies a bet-hedging strategy that benefits the macrophage. While bet hedging is common in biological systems at the organism level, our results show its use at the organelle and cellular level.The incidence of type 1 diabetes (T1D) has been increasing among children and adolescents, which environmental factors including gut microbiota play an important role. However, the underlying mechanisms are yet to be determined. Here, we show that patients with newly diagnosed T1D displayed not only a distinct profile of gut microbiota associated with decreased short-chain fatty acid (SCFAs) production, but also an altered IgA-mediated immunity compared with healthy control subjects. Using germ free (GF) non-obese diabetic (NOD) mice, we demonstrate that gut microbiota from patients with T1D promoted different IgA-mediated immune responses compared with healthy control gut microbiota. Treatment with the SCFA, acetate, reduced gut bacteria-induced IgA response accompanied by decreased severity of insulitis in NOD mice. Our study provides new insights into the functional effects of gut microbiota on inducing IgA immune response in T1D, suggesting that SCFAs might be potential therapeutic agents in T1D prevention and/or treatment.Advanced colorectal cancer (CRC) is often accompanied by development of liver metastases (LMs) and skeletal muscle (SkM) wasting, i.e. cachexia. Despite plaguing the majority of CRC patients, cachexia remains unresolved. By using mice subcutaneously (C26) or intrasplenically injected with C26 tumor cells to mimic hepatic dissemination of cancer cells (mC26), here we aimed to further characterize functional, molecular and metabolic effects on SkM and examine whether LMs exacerbate CRC-induced cachexia. C26-derived LMs were associated with progressive loss of body weight, as well as with significant reductions in SkM size and strength, in line with reduced phosphorylation of markers of protein anabolism and enhanced protein catabolism. mC26 hosts showed prevalence of fibers with glycolytic metabolism and enhanced lipid accumulation, consistent with abnormalities of mitochondrial homeostasis and energy metabolism. In a comparison with mice bearing subcutaneous C26, cachexia appeared exacerbated in the mC26 hosts, as also supported by differentially expressed pathways within SkM. Overall, our model recapitulates the cachectic phenotype of metastatic CRC and reveals that formation of LMs resulting from CRC exacerbate cancer-induced SkM wasting by promoting differential gene expression signatures.Roughly 10% of the world's population has chronic kidney disease (CKD). In its advanced stages, CKD greatly increases the risk of hospitalization and death. Although kidney transplantation has revolutionized the care of advanced CKD, clinicians have limited ways of assessing donor kidney quality. Thus, optimal donor kidney-recipient matching can not be performed, meaning that some patients receive damaged kidneys that function poorly. Fibrosis is a form of chronic damage often present in donor kidneys that is an important predictor of future renal function. Currently, no safe, easy to perform technique exists that accurately quantifies renal fibrosis. We describe a novel photoacoustic (PA) imaging technique that directly images collagen, the principal component of fibrotic tissue. PA imaging non-invasively quantifies whole kidney fibrotic burden in mice, and cortical fibrosis in pig and human kidneys, with outstanding accuracy and speed. Remarkably, three-dimensional PA imaging exhibited sufficiently high resolution to capture intra-renal variations in collagen content. We further show that PA imaging can be performed in a setting that mimics human kidney transplantation, suggesting the potential for rapid clinical translation. Taken together, our data suggests that PA collagen imaging is a major advance in fibrosis quantification that could have widespread pre-clinical and clinical impact.Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced polymicrobial sepsis decreased the expression of transcription factor cAMP Response Element Binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. https://www.selleckchem.com/products/mitomycin-c.html The inflammatory cytokine IL-1β reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits PDE4-mediated hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.Chemoresistance is still a critical challenge for efficient treatment of multiple myeloma (MM) during the bortezomib-based chemotherapy. Recent studies have suggested that heme oxygenase-1 (HO-1) is involved in apoptosis, proliferation and chemoresistance in cancer cells. Here we aim to investigate the role and mechanism of HO-1 in bortezomib-sensitivity to myeloma cells. In the study population, we found that HO-1 was highly expressed in CD138+ primary myeloma cells, which was positively associated with Gas6 expression and Gas6 plasma levels in MM patients. Downregulation of HO-1 using pharmacological inhibitor ZnPPIX or siRNA knockdown significantly enhanced myeloma cell sensitivity to bortezomib in human primary CD138+ cells, U266 and RPMI8226 cell lines. Mechanistically, HO-1 regulated Gas6 production via ERK/STAT3 axis. Combination with HO-1 inhibition increased bortezomib-induced apoptosis and antiproliferative effects via suppressing Gas6 production. These findings suggest that combination of bortezomib and HO-1 inhibitor may serve as a promising therapeutic target against bortezomib-resistant MM.