Blocking HGF derived from GCMSCs decreased proliferation, metastasis, and angiogenesis of gastric cancer cells in vivo. Conclusions GCMSCs highly expressed G6PD and facilitated the progression of gastric cancer through the G6PD-NF-κB-HGF axis coordinates. Blocking HGF derived from GCMSCs is a potential new therapeutic target for the treatment of gastric cancer.Background No studies evaluating the clinical outcomes of radiotherapy (RT) for hepatocellular carcinoma (HCC) in the caudate lobe have been available to date. The purpose of this study was to evaluate the effectiveness and safety of RT for HCC in the caudate lobe. Material and Methods Seventy patients with HCC in the caudate lobe treated with RT from a multi-institutional database were included in this study. The median equivalent dose in 2 Gy (EQD2) was 80.0 Gy10 (range, 31.3-99.3), and freedom from local progression (FFLP), progression-free survival (PFS), and overall survival (OS) rates were evaluated. Results The median time of follow-up was 47.9 months (range, 3.4-127), and the 5-year FFLP, PFS, and OS rates were 80.6% [95% confidence interval (CI), 70.8-91.8], 13.8% (95% CI, 7.5-25.4), and 51.3% (95% CI, 39.9-66.1), respectively. In the multivariate analysis, the radiation dose was significantly associated with the FFLP rate [hazard ratio (HR), 0.57 per 10 Gy10 increase, p = 0.001], and the status of FFLP was significantly associated with OS (HR, 2.694, p = 0.014). https://www.selleckchem.com/products/pembrolizumab.html The overall rate of ≥grade 3 adverse events was 5.7% (4 of 70), and RT-related mortality was not observed. Conclusion RT for HCC in the caudate lobe showed promising FFLP and OS rates with safe toxicity profiles. These findings suggest that RT may be a promising treatment option for HCC in the caudate lobe.BCOR is an epigenetic regulator altered by various mechanisms including BCOR-internal tandem duplication (BCOR-ITD) in a wide range of cancers. Six different BCOR-ITD in the 3'-part of the coding sequence of exon 15 have been reported ranging from 89 to 114 bp in length. BCOR-ITD is a common genetic alteration found in clear cell sarcoma of the kidney and primitive myxoid mesenchymal tumor of infancy (PMMTI) and it characterizes a new type of central nervous system tumor "CNS tumor with BCOR-ITD". It can also be detected in undifferentiated round cell sarcoma (URCS) and in high-grade endometrial stromal sarcoma (HGESS). Therefore, it is of utmost importance to search for this genetic alteration in these cancers with the most frequent technique being RNA-sequencing. Here, we developed a new droplet PCR assay (dPCR) to detect the six sequences characterizing BCOR-ITD. To achieve this goal, we used a single colored probe to detect both the duplicated region and the normal sequence that acts as a reference. We first generated seven synthetic DNA sequences ITD0 (the normal sequence) and ITD1 to ITD6 (the duplicated sequences described in the literature) and then we set up the optima dPCR conditions. We validated our assay on 19 samples from a representative panel of human tumors (9 HGNET-BCOR, 5 URCS, 3 HGESS, and 2 PMMTI) in which BCOR-ITD status was known using at least one other method including RNA sequencing, RT-PCR or DNA-methylation profiling for CNS tumors. Our results showed that our technique was 100% sensitive and specific. DPCR detected BCOR-ITD in 13/19 of the cases; in the remaining 6 cases additional RNA-sequencing revealed BCOR gene fusions. To conclude, in the era of histomolecular classification of human tumors, our modified dPCR assay is of particular interest to detect BCOR-ITD since it is a robust and less expensive test that can be applied to a broad spectrum of cancers that share this alteration.Pancreatic ductal adenocarcinoma (PDAC) remains one of the most dismal gastrointestinal malignancies with an overall 5-year survival rate of 8%-9%. The intra-tumor heterogeneity and special tumor microenvironment in PDAC make it challenging to develop effective treatment strategies. Exosomes are extracellular vesicles that originate from the endosomes and have a diameter of 40-160 nm. A growing body of evidence has shown that exosomes play vital roles in tumor initiation and development. Recently, extensive application of exosomes as biomarkers and drug carriers has rendered them attractive in the field of PDAC. This review summarizes the latest progress in the methodologies for isolation, modification, and tracking of exosomes, exosome-mediated cell-to-cell communication, clinical applications of exosome as minimally invasive liquid biopsy and drugs carriers, as well as their involvement in the angiogenic regulation in PDAC. In spite of these advancements, some obstacles are still required to be overcome to use the exosome-based technologies for early diagnosis or improvement of prognosis of patients with PDAC.Circular RNA (circRNA) is a newly discovered non-coding RNA. Recent reports suggest that circRNAs are key regulators of tumorigenesis because of their special structure. In order to investigate the role of hsa_circ_0002111 in papillary thyroid cancer (PTC), we use quantitative real-time polymerase chain reaction (qRT-PCR) to determine the expression pattern of hsa_circ_0002111 in 82 paired PTC and adjacent non-cancerous thyroid tissues. Cell counting kit-8, colony formation, and transwell assays were conducted to assess the effect of hsa_circ_0002111 on PTC cell proliferation, migration, and invasion. We found that the expression of hsa_circ_0002111 was significantly up-regulated in PTC tissues compared with adjacent non-cancerous tissues (P less then 0.0001). Expression of hsa_circ_0002111 was also associated with advanced TNM stage and lymph-node metastasis of patients with PTC. The area under the receiver operating characteristic curve was 0.833. Further, cell function assays showed that hsa_circ_0002111 inhibition significantly suppressed the proliferation and invasion abilities of PTC cells in vitro. In conclusions, the study findings show that the over-expression of hsa_circ_0002111 promotes PTC, and thus hsa_circ_0002111 may be a potential diagnostic biomarker and therapeutic target for PTC.