Inflammasomes are components of the innate immune response that have recently emerged as crucial controllers of tissue homeostasis. In particular, the nucleotide-binding domain, leucine-rich-containing (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a complex platform involved in the activation of caspase-1 and the maturation of interleukin (IL)-1β and IL-18, which are mainly released via pyroptosis. Pyroptosis is a caspase-1-dependent type of cell death that is mediated by the cleavage of gasdermin D and the subsequent formation of structurally stable pores in the cell membrane. Through these pores formed by gasdermin proteins cytosolic contents are released into the extracellular space and act as damage-associated molecular patterns, which are pro-inflammatory signals. Inflammation is a main contributor to the development of hypertension and it also is known to stimulate fibrosis and end-organ damage. Patients with essential hypertension and animal models of hypertension exhibit elevated levels of circulating IL-1β. Downregulation of the expression of key components of the NLRP3 inflammasome delays the development of hypertension and pharmacological inhibition of this inflammasome leads to reduced blood pressure in animal models and humans. Although the relationship between pyroptosis and hypertension is not well established yet, pyroptosis has been associated with renal and cardiovascular diseases, instances where high blood pressure is a critical risk factor. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of hypertension and discuss the potential use of approaches targeting this pathway as future anti-hypertensive strategies.Salinity has a negative impact on plant growth, with photosynthesis being downregulated partially due to osmotic effect and enhanced cellular oxidation. Redox signaling contributes to the plant response playing thioredoxins (TRXs) a central role. In this work we explore the potential contribution of Arabidopsis TRXo1 to the photosynthetic response under salinity analyzing Arabidopsis wild-type (WT) and two Attrxo1 mutant lines in their growth under short photoperiod and higher light intensity than previous reported works. Stomatal development and apertures and the antioxidant, hormonal and metabolic acclimation are also analyzed. In control conditions mutant plants displayed less and larger developed stomata and higher pore size which could underlie their higher stomatal conductance, without being affected in other photosynthetic parameters. Under salinity, all genotypes displayed a general decrease in photosynthesis and the oxidative status in the Attrxo1 mutant lines was altered, with higher levels of H2O2 and NO but also higher ascorbate/glutathione (ASC/GSH) redox states than WT plants. Finally, sugar changes and increases in abscisic acid (ABA) and NO may be involved in the observed higher stomatal response of the TRXo1-altered plants. Therefore, the lack of AtTRXo1 affected stomata development and opening and the mutants modulate their antioxidant, metabolic and hormonal responses to optimize their adaptation to salinity.Determining the prevalence and local transmission dynamics of parasitic organisms are necessary to understand the ability of parasites to persist in host populations and disperse across regions, yet local transmission dynamics, diversity, and distribution of haemosporidian parasites remain poorly understood. We studied the prevalence, diversity, and distributions of avian haemosporidian parasites of the genera Plasmodium, Haemoproteus, and Leucocytozoon among resident and migratory birds in Serra do Mar, Brazil. Using 399 blood samples from 66 Atlantic Forest bird species, we determined the prevalence and molecular diversity of these pathogens across avian host species and described a new species of Haemoproteus. Our molecular and morphological study also revealed that migratory species were infected more than residents. However, vector infective stages (gametocytes) of Leucocytozoon spp., the most prevalent parasites found in the most abundant migrating host species in Serra do Mar (Elaenia albiceps), were not seen in blood films of local birds suggesting that this long-distance Austral migrant can disperse Leucocytozoon parasite lineages from Patagonia to the Atlantic Forest, but lineage sharing among resident species and local transmission cannot occur in this part of Brazil. Our study demonstrates that migratory species may harbor a higher diversity and prevalence of parasites than resident species, but transportation of some parasites by migratory hosts may not always affect local transmission.The hot embossing of polymers is one of the most popular methods for replicating high-precision structures on thermoplastic polymer substrates at the micro-/nanoscale. However, the fabrication of hybrid multiscale microstructures by using the traditional isothermal hot embossing process is challenging. https://www.selleckchem.com/products/ro-3306.html Therefore, in this study, we propose a novel nonuniform heating method for the hot embossing of polymers with multiscale microstructures. In this method, a thin graphene-based heater with a nonuniform heating function, a facility that integrates the graphene-based heater and gas-assisted hot embossing, and a roll of thermoplastic film are employed. Under appropriate process conditions, multiscale polymer microstructure patterns are fabricated through a single-step hot embossing process. The quality of the multiscale microstructure patterns replicated is uniform and high. The technique has great potential for the rapid and flexible fabrication of multiscale microstructure patterns on polymer substrates.Mammalian orthoreovirus (reovirus), a dsRNA virus with a multilayered capsid, serves as a model system for studying the entry of similar viruses. The outermost layer of this capsid undergoes processing to generate a metastable intermediate. The metastable particle undergoes further remodeling to generate an entry-capable form that delivers the genome-containing inner capsid, or core, into the cytoplasm. In this review, we highlight capsid proteins and the intricacies of their interactions that control the stability of the capsid and consequently impact capsid structural changes that are prerequisites for entry. We also discuss a novel proviral role of host membranes in promoting capsid conformational transitions. Current knowledge gaps in the field that are ripe for future investigation are also outlined.