https://www.selleckchem.com/products/Temsirolimus.html Tregs from patients with IHF exhibited compromised ability to suppress CD4+CD25‑ T cells proliferation and inflammatory cytokines secretion. Specifically, sFGL2 levels and Tregs frequencies positively correlated with LVEF, whereas negatively correlated with left ventricular end‑diastolic dimension and N‑terminal pro‑brain natriuretic peptide. sFGL2 levels were positively correlated with Tregs frequencies. In conclusion, the reduction of serum sFGL2 levels are associated with the progression of IHF and sFGL2 could be used as a potential indicator for predicting disease severity.As is well known, dexmedetomidine (DEX) serves a neuroprotective role in cerebral ischemia‑reperfusion (CIR) injury, and microRNA (miR)‑199a has been re‑ported to be associated with IR injury. However, the association between DEX and miR‑199a in CIR injury remains unknown. Thus, the aim of the present study was to verify whether the neuroprotective effect of DEX on cerebral ischemia‑reperfusion rats is associated with miR‑199a. A rat model of CIR was established, and the modified neurological severity score (mNSS) was evaluated. The effect of DEX on the patholog‑ical structure of the cerebral cortex in CIR rats was observed by hematoxylin and eosin and Nissl staining. Reverse transcription‑quantitative PCR was used to analyze the expression levels of miR‑199a in brain tissue following intracerebroventricular injection of miR‑199a antagomir. The co‑expression of NeuN and microtubule‑associated proteins 1A/1B light chain 3B in the cerebral cortex was analyzed by immunofluorescence staining. Western blotting and immunohistochemistry were performed to analyze the expression of autophagy‑associated proteins in the brain tissue. DEX inhibited the expression of miR‑199a, decreased the mNSS and improved pathological damage to the cerebral cortex. DEX also inhibited autophagy and expression levels of associated proteins and decreased nerve cell inj