As a recently identified higher-order quadruplex (G4) structure, the G4 dimer possesses unique structure and biological functions. In this work, we found accidentally that two tandem PW17 (one known G4-forming DNA) sequences can fold into a stable G4 dimer, and the G4 dimer can enhance dramatically the fluorescence intensity of thioflavin T (ThT). The G4 dimer/ThT fluorescence intensity is about ninefold that of the corresponding G4 monomer/ThT. Meanwhile, compared with the common G4/ThT system, G4 dimer/ThT exhibited more stable fluorescence emission in the media with various concentrations of Na+ and K+. https://www.selleckchem.com/products/repsox.html On the basis of these findings, G4 dimer/ThT was used as a fluorescence indicator to construct one arched DNA probe for label-free detection of DNA. By incorporating a G4 dimer sequence in amplified products, we further designed one rolling circle amplification-based biosensing strategy to show the utility of this G4 dimer/ThT fluorescence indicator. This study demonstrates that dimeric G4 is an effective nucleic acid scaffold for lighting up ThT, showing promising applications in a label-free bioassay.An intriguing aggregation-induced electrochemiluminescence (AIECL) bioconjugate was fabricated by encapsulating fac-tris(2-phenylpyridine)iridium(III) complexes [Ir(ppy)3] in the apoferritin (apoFt) cavity for biosensing application. Based on the unique pH-dependent disassembly/reassembly characteristic of apoFt, approximately 44.3 molecules of Ir(ppy)3 aggregated in the single cavity through both intermolecular π-π-stacking interactions and hydrogen bonds that efficiently restricted the intramolecular motions to trigger the AIECL effect. Compared to monomers, Ir(ppy)3 aggregates performed 5.3-fold-enhanced ECL emission using tri-n-propylamine (TPrA) as a coreactant. The fabricated Ir(ppy)3@apoFt bioconjugate was flexibly labeled with a detection antibody to act as a transducer for the immunosensor construction. To further catalyze the ECL reaction between the reductive TPrA• and the oxidative Ir(ppy)3+• radicals, a conductive and electroactive substrate of Fe2N and gold nanoparticle-codecorated reduced graphene oxide (Fe2N/rGO/Au) was established to incubate the capture antibody. Therefore, a "signal on" immunosensor was developed for sensitive assay of cytokeratin 19 fragment 21-1 (CYFRA 21-1), in which good linearity ranging from 1 pg/mL to 50 ng/mL with a low detection limit of 0.43 pg/mL (S/N = 3) was obtained. This study shares with an inspiration of using apoFt to design iridium(III)-based AIECL emitters, which will expand more possibilities of organic iridium(III) complexes in establishing innovative ECL immunoassays.Electron transport across the transition-metal dichalcogenide (TMD)/metal interface plays an important role in determining the performance of TMD-based optoelectronic devices. However, the robustness of this process against structural heterogeneities remains unexplored, to the best of our knowledge. Here, we employ a combination of time-resolved photoemission electron microscopy (TR-PEEM) and atomic force microscopy to investigate the spatially resolved hot-electron-transfer dynamics at the monolayer (1L) MoS2/Au interface. A spatially heterogeneous distribution of 1L-MoS2/Au gap distances, along with the sub-80 nm spatial- and sub-60 fs temporal resolution of TR-PEEM, permits the simultaneous measurement of electron-transfer rates across a range of 1L-MoS2/Au distances. These decay exponentially as a function of distance, with an attenuation coefficient β ∼ 0.06 ± 0.01 Å-1, comparable to molecular wires. Ab initio simulations suggest that surface plasmon-like states mediate hot-electron-transfer, hence accounting for its weak distance dependence. The weak distance dependence of the interfacial hot-electron-transfer rate indicates that this process is insensitive to distance fluctuations at the TMD/metal interface, thus motivating further exploration of optoelectronic devices based on hot carriers.Chromosome structure and dynamics are essential for life, as the way that our genomes are spatially organized within cells is crucial for gene expression, differentiation, and genome transfer to daughter cells. There is a wide variety of methods available to study chromosomes, ranging from live-cell studies to single-molecule biophysics, which we briefly review. While these technologies have yielded a wealth of data, such studies still leave a significant gap between top-down experiments on live cells and bottom-up in vitro single-molecule studies of DNA-protein interactions. Here, we introduce "genome-in-a-box" (GenBox) as an alternative in vitro approach to build and study chromosomes, which bridges this gap. The concept is to assemble a chromosome from the bottom up by taking deproteinated genome-sized DNA isolated from live cells and subsequently add purified DNA-organizing elements, followed by encapsulation in cell-sized containers using microfluidics. Grounded in the rationale of synthetic cell research, the approach would enable to experimentally study emergent effects at the global genome level that arise from the collective action of local DNA-structuring elements. We review the various DNA-structuring elements present in nature, from nucleoid-associated proteins and SMC complexes to phase separation and macromolecular crowders. Finally, we discuss how GenBox can contribute to several open questions on chromosome structure and dynamics.Metabolic disorders have been increasing at an alarming rate, and one such example of metabolic disorder is type 2 diabetes mellitus (T2DM). Unregulated gluconeogenesis in T2DM results in increased hepatic glucose output that causes fasting and postprandial hyperglycaemia. Extensive proofs have shown that the downregulation of the key rate-limiting enzyme phosphoenolpyruvate carboxykinase-1 (PCK-1) of gluconeogenesis improved glucose homeostasis in vivo. In the present study, we have synthesized and characterized liver-specific stearic acid conjugated octaarginine (StA-R8) functionalized 4arm-2K-PEGamineylated graphene oxide nanosheets (GPR8) for the delivery of siRNA against PCK-1 in T2DM C57BL/6 mice. We found that a single intravenous administration of siRNA (3 mg/kg BW) conjugated to GPR8 (GPR8PCK-1siRNA(3 mg/kg BW) conjugate) in an optimized N/P ratio exploited as a therapeutic nanoformulation maintained glucose homeostasis for nearly 4 weeks in the T2DM mice. Efficient silencing of PCK-1 in T2DM liver tissue increased the phosphorylation of serine-256 of FOXO-1, thus showing a marked decrease in hepatic gluconeogenesis.