Copyright © 2020 Márquez-Ropero, Benito, Plaza-Zabala and Sierra.Sexually transmitted Hepatitis C virus (HCV) infections and high reinfections are a major concern amongst men who have sex with men (MSM) living with HIV-1 and HIV-negative MSM. Immune activation and/or HIV-1 coinfection enhance HCV susceptibility via sexual contact, suggesting that changes in immune cells or external factors are involved in increased susceptibility. Activation of anal mucosal Langerhans cells (LCs) has been implicated in increased HCV susceptibility as activated but not immature LCs efficiently retain and transmit HCV to other cells. However, the underlying molecular mechanism of transmission remains unclear. Here we identified the Heparan Sulfate Proteoglycan Syndecan 4 as the molecular switch, controlling HCV transmission by LCs. Syndecan 4 was highly upregulated upon activation of LCs and interference with Heparan Sulfate Proteoglycans or silencing of Syndecan 4 abrogated HCV transmission. These data strongly suggest that Syndecan 4 mediates HCV transmission by activated LCs. Notably, ourLangedijk, Kaptein, Meeussen, Zimmermann, Ribeiro and Geijtenbeek.The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily conserved family of serine/threonine protein kinases that play critical roles in the pathological process in species ranging from insects to mammals. However, the function of JNKs in bacteria-induced intestinal inflammation is still poorly understood. In this study, a fish JNK (CiJNK) pathway was identified, and its potential roles in bacterial muramyl dipeptide (MDP)-induced intestinal inflammation were investigated in Ctenopharyngodon idella. The present CiJNK was found to possess a conserved dual phosphorylation motif (TPY) in a serine/threonine protein kinase (S_TKc) domain and to contain several potential immune-related transcription factor binding sites, including nuclear factor kappa B (NF-κB), activating protein 1 (AP-1), and signal transducer and activator of downstream transcription 3 (STAT3), in its 5' flanking regions. Quantitative real-time PCR results revealed that the mRNA levels of the JNK pathway genes in the intestine were significahao, Fang, Zhou and Liu.Interleukin-33 (IL-33) is a mucosal alarmin belonging to the IL-1 cytokine family and is now recognized to have a key role in innate and adaptive immunity, contributing to tissue homeostasis and response to environmental stresses. In addition, IL-33 has also been shown to work as a positive regulator that initiates and maintains a Th2 immune response. In the context of pregnancy, it has been recently demonstrated that upon certain stress conditions, such as an infection induced inflammation, IL-33 is released from the uterine mucosa and triggers decidual B cells to produce anti-inflammatory molecules, which in turn restore immune homeostasis and prevents the development of preterm birth. In this study we therefore performed a detailed characterization of IL-33 receptor (Il1rl1 or ST2) expression in B cells during normal pregnancy, as well as in a mouse model of preterm birth. We observed that splenic B cells significantly up-regulate the expression of Il1rl1 during pregnancy and identified the B1 B cell population as the main ST2-expressing B cell subset. A further kinetic analysis showed that percentages of ST2-expressing B1 B cells are significantly augmented on days 12 and 14 of pregnancy, both in the spleen and peritoneal cavity of pregnant mice, and then drop toward the end of pregnancy to the levels observed in non-pregnant animals. Furthermore, using a mouse model of LPS-induced preterm birth, we demonstrated that not only are the percentages of ST2-expressing B1 B cells significantly enlarged in the spleen during the acute phase of preterm birth, but decidual B cells also significantly up-regulate ST2 expression as compared to term-pregnant mice. Overall, our results suggest a functional role of ST2 expression in B cells during pregnancy and reinforce the importance of the IL-33/ST2 axis in B cells as a critical mechanism to control inflammation-induced preterm birth. Copyright © 2020 Valeff, Juriol, Quadrana, Muzzio, Zygmunt, Quiroga, Ventimiglia and Jensen.The transcription factor β-catenin is able to induce tolerogenic/anti-inflammatory features in different types of dendritic cells (DCs). Monocyte-derived dendritic cells (moDCs) have been widely used in dendritic cell-based cancer therapy, but so far with limited clinical efficacy. We wanted to investigate the hypothesis that aberrant differentiation or induction of dual pro- and anti-inflammatory features may be β-catenin dependent in moDCs. β-catenin was detectable in both immature and lipopolysaccharide (LPS)-stimulated DCs. The β-catenin inhibitor ICG-001 dose-dependently increased the pro-inflammatory signature cytokine IL-12p70 and decreased the anti-inflammatory signature molecule IL-10. https://www.selleckchem.com/products/zidesamtinib.html The β-catenin activator 6-bromoindirubin-3'-oxime (6-BIO) dose-dependently increased total and nuclear β-catenin, and this was associated with decreased IL-12p70, increased IL-10, and reduced surface expression of activation markers, such as CD80 and CD86, and increased expression of inhibitory markers, such as PD-L1. 6-BIO and ICG-001 competed dose-dependently regarding these features. Genome-wide mRNA expression analyses further underscored the dual development of pro- and anti-inflammatory features of LPS-matured moDCs and suggest a role for β-catenin inhibition in production of more potent therapeutic moDCs. Copyright © 2020 Azeem, Bakke, Appel, Øyan and Kalland.The Triggering Receptor Expressed on Myeloid cells-like 4 (TREML4) is a member of the TREM receptor family, known modulators of inflammatory responses. We have previously found that TREML4 expression positively correlates with human coronary arterial calcification (CAC). However, the role of TREML4 in the pathogenesis of cardiovascular disease remains incompletely defined. Since macrophages play a key role in inflammatory conditions, we investigated if activated macrophages selectively expressed TREML4 and found that carriage of either one of the eQTL SNP's previously associated with increased TREML4 expression conferred higher expression in human inflammatory macrophages (M1) compared to alternatively activated macrophages (M2). Furthermore, we found that TREML4 expression in human M1 dysregulated several inflammatory pathways related to leukocyte activation, apoptosis and extracellular matrix degradation. Similarly, murine M1 expressed substantial levels of Treml4, as did oxLDL treated macrophages. Transcriptome analysis confirmed that murine Treml4 controls the expression of genes related to inflammation and lipid regulation pathways, suggesting a possible role in atherosclerosis.