This work showed that the carbonate species have an enhanced catalytic impact with rate constants up to 1000 times larger than would be estimated by the Brønsted relationship for similar acids, which causes the oxidation by HOCl rate constant (kHOCl) to nearly double and oxidation by Cl2 to occur above pH 7 in high-alkalinity waters.High-stability, zirconium-based metal-organic frameworks are attractive as heterogeneous catalysts and as model supports for uniform arrays of subsequently constructed heterogeneous catalysts-for example, MOF-node-grafted metal-oxy and metal-sulfur clusters. For hexa-Zr(IV)-MOFs characterized by nodes that are less than 12-connected, sites not used for linkers are ideally occupied by reactive and displaceable OH/H2O pairs. The desired pairs are ideal for grafting the aforementioned catalytic clusters, while aqua-ligand lability renders them effective for exposing highly Lewis-acidic Zr(IV) sites (catalytic sites) to candidate reactants. New single-crystal X-ray studies of an eight-connected Zr-MOF, NU-1000, reveal that conventional activation fully removes modulator ligands, but replaces them with three node-blocking formate ligands (from solvent decomposition) and only one OH/H2O pair, not four-a largely overlooked complication that now appears to be general for Zr-MOFs. Here we describe an alternative activation protocol that effectively removes modulators, avoids formate, and installs the full complement of terminal OH/H2O pairs. It does so via an unusual isolatable intermediate featuring eight aqua ligands and four non-ligated chlorides-again as supported by single-crystal X-ray data. We find that complete replacement of node-blocking modulators/formate with the originally envisioned OH/OH2 pairs has striking consequences; here we touch upon just three. First, elimination of unrecognized formate renders aqua ligands much more thermally labile, enabling open Zr(IV) sites to be obtained at lower temperature. Second, in the absence of formate, which otherwise links and locks pairs of node Zr(IV) ions, reversible removal of aqua ligands engenders reversible contraction of MOF meso- and micropores, as evidenced by X-ray diffraction. Third, formate replacement with OH/OH2 pairs renders NU-1000 ca.10× more active for catalytic hydrolytic degradation of a representative simulant of G-type chemical warfare agents.In this study, we use comprehensive vehicle emission remote sensing measurements of over 230,000 passenger cars to estimate total UK ammonia (NH3) emissions. Estimates are made using "top-down" and "bottom-up" methods that demonstrate good agreement to within 1.1% for total fuel consumed or CO2 emitted. A central component of this study is the comprehensive nature of the bottom-up emission estimates that combine highly detailed remote sensing emission data with over 4000 km of 1 Hz real driving data. Total annual UK NH3 emissions from gasoline passenger cars are estimated to be 7.8 ± 0.3 kt from the bottom-up estimate compared with 3.0 ± 1.7 kt reported by the UK national inventory. An important conclusion from the analysis is that both methodologies confirm that gasoline passenger car NH3 emissions are underestimated by a factor of about 2.6 compared with the 2018 UK National Atmospheric Emissions Inventory. Furthermore, we find that inventory estimates of urban emissions of NH3 for passenger cars are underestimated by a factor of 17.Sustainability policies are often motivated by the potential to achieve multiple goals, such as simultaneously mitigating the climate change and air quality impacts of energy use. Ex ante analysis is used prospectively to inform policy decisions by estimating a policy's impact on multiple objectives. In contrast, ex post analysis of impacts that may have multiple causes can retrospectively evaluate the effectiveness of policies. Ex ante analyses are rarely compared with ex post evaluations of the same policy. These comparisons can assess the realism of assumptions in ex ante methods and reveal opportunities for improving prospective analyses. https://www.selleckchem.com/products/Perifosine.html We illustrate the benefits of such a comparison by examining a case of two energy policies in China. Using ex post analysis, we estimate the impacts of two policies, one that targets energy intensity and another that imposes quantitative targets on SO2 emissions, on energy use and pollution outcomes in two major energy-intensive industrial sectors (cement, iron and steel) in China. We find that the ex post effects of the energy intensity policy on both energy and pollution outcomes are very limited on average, while the effects of the SO2 emissions policy are large. Compared with ex ante analysis, ex post estimates of benefits of the energy intensity policy are on average smaller, and differ by location in both sign and magnitude. Accounting for firm-level heterogeneity in production processes and policy responses, as well as the use of empirically grounded counterfactual baselines, can improve the realism of ex ante analysis and thus provide a more reliable basis for policy design.High electrical conductivity is a prerequisite for improving the performance of organic semiconductors for various applications and can be achieved through molecular doping. However, often the conductivity is enhanced only up to a certain optimum doping concentration, beyond which it decreases significantly. We combine analytical work and Monte Carlo simulations to demonstrate that carrier-carrier interactions can cause this conductivity decrease and reduce the maximum conductivity by orders of magnitude, possibly in a broad range of materials. Using Monte Carlo simulations, we disentangle the effect of carrier-carrier interactions from carrier-dopant interactions. Coulomb potentials of ionized dopants are shown to decrease the conductivity, but barely influence the trend of conductivity versus doping concentration. We illustrate these findings using a doped fullerene derivative for which we can correctly estimate the carrier density at which the conductivity maximizes. We use grazing-incidence wide-angle X-ray scattering to show that the decrease of the conductivity cannot be explained by changes to the microstructure. We propose the reduction of carrier-carrier interactions as a strategy to unlock higher-conductivity organic semiconductors.