https://www.selleckchem.com/products/ljh685.html Class D β-lactamases have risen to notoriety due to their wide spread in bacterial pathogens, propensity to inactivate clinically important β-lactam antibiotics, and ability to withstand inhibition by the majority of classical β-lactamase inhibitors. Understanding the catalytic mechanism of these enzymes is thus vitally important for the development of novel antibiotics and inhibitors active against infections caused by antibiotic-resistant bacteria. Here we report an in crystallo time-resolved study of the interaction of the class D β-lactamase CDD-1 from Clostridioides difficile with the diazobicyclooctane inhibitor, avibactam. We show that the catalytic carboxylated lysine, a residue that is essential for both acylation and deacylation of β-lactams, is sequestered within an internal sealed pocket of the enzyme. Time-resolved snapshots generated in this study allowed us to observe decarboxylation of the lysine and movement of CO2 and water molecules through a transient channel formed between the lysine pocket and the substrate binding site facilitated by rotation of the side chain of a conserved leucine residue. These studies provide novel insights on avibactam binding to CDD-1 and into the catalytic mechanism of class D β-lactamases in general.Nowadays, controllable drug release is a vitally important strategy for cancer treatment and usually realized using implanting biocompatible devices. However, these devices need to be removed by another surgery after the function fails, which brings the risks of inflammation or potential death. In this article, a biodegradable flexible electronic device with controllable drug (paclitaxel) release was proposed for cancer treatment. The device is powered by an external alternating magnetic field to generate internal resistance heat and promote drug release loaded on the substrate. Moreover, the device temperature can even reach to 65 °C, which was sufficient for controllable dr