In this study, MS/MS via CID was shown to provide substantial peptide backbone fragmentation, in addition to glycosidic fragmentation, in an energy-dependent manner. While qualitatively similar to previous findings for N-glycopeptides, the energy-resolved CID (ER-CID) of O-glycopeptides was found to be substantially more sensitive to the collision energy setting. Thus, deliberately obtaining either glycan or peptide dissociation is a more delicate undertaking for O-glycopeptides. Establishing a more complete understanding of O-glycopeptide ER-CID is likely to have a substantive impact on how O-glycoproteomic analysis is approached in the future.Higher-energy collisional dissociation (HCD) is a well-established fragmentation technique in liquid chromatography tandem mass spectrometry (LC-MS/MS) and is used to study protein post translational modifications (PTMs) during peptide mapping. However, labile PTMs like glycosylation, glycation, sulfonylation, or phosphorylation tend to fragment earlier than peptide backbones under HCD. This leads to complicated MS/MS spectra, compromising data quality and downstream data interpretation. Electron-transfer/higher-energy collision dissociation (EThcD) has been used to analyze PTMs, but important components might be missed because of the increased duty cycle. To address this issue, modification-specific fragment ions formed in HCD experiments could be utilized to trigger EThcD analysis only for modified peptides. The trigger for EThcD was established by applying HCD with a high normalized collision energy, generating multiple informative Amadori derived lysine signature ions from a glycated peptide. These signature ions were then applied to trigger targeted EThcD for lysine glycation identification. This improved approach can further expand the characterization efforts of highly labile PTMs in therapeutic proteins.Simple febrile convulsion (SFC) is a common disease that is mainly caused by fever from extracranial infections. In this study, we used proteomic approaches involving discovery and validation cohorts to examine the proteomes of serum from children who were diagnosed with SFC, children with fever but without convulsion, and healthy children (normal controls). We identified 86 proteins involved in different biological pathways that were significantly different between the SFC and normal control groups. Of these 86 proteins, 35 had higher expression in the SFC group compared with the normal control group, whereas 51 had lower expression. Notably, fibrinogen-related proteins involved in the coagulation system pathway were markedly decreased in the SFC group. Targeted and absolute quantification of fibrinogen-related proteins was performed and validated the potential of these proteins as biomarkers. Thus, fibrinogen-related proteins may participate in the pathophysiological process of SFC and may be potential biomarkers for the diagnosis of SFC.Recently, the olive oil industry has been the subject of harsh criticism for false labeling and even adulterating olive oils. This situation in which both the industry and the population are affected leads to an urgent need to increase controls to avoid fraudulent activities around this precious product. The aim of this work is to propose a new analytical platform by coupling electrospray ionization (ESI), differential mobility analysis (DMA), and mass spectrometry (MS) for the analysis of olive oils based on the information obtained from the chemical fingerprint (nontargeted analyses). Regarding the sample preparation, two approaches were proposed (i) sample dilution and (ii) liquid-liquid extraction (LLE). To demonstrate the feasibility of the method, 30 olive oil samples in 3 different categories were analyzed, using 21 of them to elaborate the classification model and the remaining 9 to test it (blind samples). To develop the prediction model, principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used. The overall success rate of the classification to differentiate among extra virgin olive oil (EVOO), virgin olive oil (VOO), and lampante olive oil (LOO) was 89% for the LLE samples and 67% for the diluted samples. However, combining both methods, the ability to differentiate EVOO from lower-quality oils (VOO and LOO) and the edible oils (EVOO and VOO) from nonedible oil (LOO) was 100%. The results show that ESI-DMA-MS can become an effective tool for the olive oil sector.Fentanyl and its analogues play a major role in the current opioid epidemic. https://www.selleckchem.com/products/yd23.html In particular, these highly potent opioids have become a health hazard due to their use as additives in street drugs. Consequently, rapid on-site procedures for the analysis of this class of seized drugs are needed, especially considering the reported backlog of drug samples, which must undergo identification and confirmation tests to validate the presence of an illicit substance. Paper based devices are cheap sampling and analysis vehicles that have been shown capable of allowing rapid identification and confirmation of drugs of abuse. Modifying paper substrates by imprinting nanoparticles enables surface enhanced Raman spectroscopy (SERS) as well as a second analysis from the same substrate, namely paper spray ionization mass spectrometry. While such a procedure has been described for laboratory use, these illicit drug samples are typically collected in the field and this is where testing should be done. We combine paper SERS and paper spray MS on field-portable and commercial off-the-shelf (COTS) devices for the rapid and low-cost identification and confirmation of fentanyl and its analogues, enabling in situ analysis at the point of seizure of suspect samples. The commercial nature of both instruments moves this technology from the academic realm to a setting where the criminal justice system can realistically utilize it. The capabilities of this single-substrate dual-analyzer technique are further examined by sampling a variety of surfaces of forensic interest.Ion mobility-mass spectrometry has emerged as a powerful tool for interrogating a wide variety of chemical systems. Collision-induced unfolding (CIU), typically performed in time-of-flight instruments, has been utilized to obtain valuable qualitative insight into protein structure and illuminate subtle differences between related species. CIU experiments can be performed relatively quickly, but unfolding energy information obtained from them has not yet been interpreted quantitatively. While several methods can determine quantitative dissociation energetics for small molecules, clusters, and peptides, these methods have rarely been applied to proteins, and never to study unfolding. Here, we present a method to rapidly determine activation energies for protein unfolding and dissociation, built on a model for energy deposition during collisional activation. The method is validated by comparing activation energies for dissociation of three complexes with those obtained using blackbody infrared radiative dissociation (BIRD); values from the two methods are in agreement.