In this study, sulfate radical-based oxidation of an alcohol ethoxylate (AE) was explored by the persulfate (PS)/UV-C process. Poly(oxyethylene)(4)laurylether, commercially known as Brij30®, was used as a model AE. PS/UV-C oxidation of aqueous Brij30® (8-20 mg/L) was performed at initial PS concentrations varying between 0.50 and 6.50 mM and at initial pH values of 3.0 and 6.0. Results indicated that an increase in both initial PS and Brij30® concentrations did not have a significant effect on Brij30® removal efficiency and that Brij30® abatements of more than 90% could be achieved after 60 min of treatment time. Total organic carbon (TOC) removals were significantly improved with increasing initial PS concentrations for both initial pH values. On the other hand, an increase in initial Brij30® concentration had a negative effect on mineralization. By employing the competitive kinetic method, the second-order reaction rate coefficient of Brij30® with the sulfate radical (SO4•-) was determined as 1.62 × 109 ± 3.5 × 107 M-1s-1. The second-order reaction rate constant of TOC, originating from Brij30® and reaction intermediates, was found to be 9.09 × 105 ± 2.91 × 105 M-1s-1 and 1.13 × 106 ± 0.46 × 106 M-1s-1 for pH values of 6.0 and 3.0, respectively. Toxicity of PS/UV-C treated aqueous Brij30® solutions towards Vibrio fischeri was also investigated to determine the possible toxic behavior of oxidation products.Principal component analysis (PCA) is a popular method for process monitoring. https://www.selleckchem.com/products/abraxane-nab-paclitaxel.html However, most processes are time-varying, thus older samples are not representative of the current process status. This led to the introduction of adaptive-PCA based monitoring, such as moving window PCA (MWPCA). In this study, near-infrared spectroscopy (NIRS) responses to digester failures were evaluated to develop a spectral data processing tool. Tests were performed with a spectroscopic probe (350-2,500 nm), using a 35 L mesophilic continuously stirred tank reactor. Co-digestion experiments were performed with pig slurry mixed with several co-substrates. Different stresses were induced by abruptly increasing the organic load rate, changing the feedstock or stopping the stirring. Physicochemical parameters as well as NIRS spectra were acquired for lipid, organic and protein overloads experiments. MWPCA was then applied to the collected spectra for a multivariate statistical process control. MWPCA outputs, Hotelling T2 and residuals Q statistics showed that most of the induced dysfunctions can be detected with variations in these statistics according to a defined criterion based on spectroscopic principles and the process. MWPCA appears to be a multivariate statistical method that could help in decision support in industrial biogas plants.Ammonia nitrogen levels are very high in leachate. This study was conducted to optimize the removal of ammonia nitrogen from fresh landfill leachate using a combination of ultrasound waves and ultraviolet irradiation. A sample of fresh landfill leachate was obtained from a municipal landfill site, located in Shahroud (Semnan, Iran) and its ammonia nitrogen was measured by spectrophotometric method. Ultrasound and ultraviolet irradiation were simultaneously used to remove ammonia nitrogen. Box-Behnken design (BBD) based on response surface method (RSM) was applied to analyze and optimize ammonia nitrogen removal by different variables, including pH, contact time, ultrasound frequency and UV intensity. Based on this method, 29 samples with three replications were tested. The analysis of variance indicated quadratic model was significant for removal of ammonia nitrogen from leachate. According to the model, 99.7% removal efficiency (%) of ammonia nitrogen was obtained in the optimal conditions (pH at 9.7, contact time of 59.1 min, ultrasound frequency of 54 kHz and UV intensity of 40 W). The removal efficiency of ammonia nitrogen was obtained 98.6% from the laboratory experiment in these conditions, which agrees well with the predicted response value.In this study, the treatment of paper industry wastewaters by the electrocoagulation (EC) process with a strong oxidant, persulfate addition, was investigated. Persulfate was activated by dissolution of Fe and Al from electrodes during the process. Central composite design method, being one of the response surface methods, was applied for the optimization of process parameters and the development of a mathematical model for chemical oxygen demand (COD) removal from paper industry wastewaters. The effects of S2O8-2/COD ratio, current, pH, and reaction time, being the variables of process, were assessed on the efficiency of contaminant removal. For COD removal in EC processes in which Fe and Al electrodes were used, the model's correlation coefficients (R2) were determined as 90.14% and 87.46%, respectively. As the result of experimental study actualized under optimum conditions determined by the model in order to obtain maximum contaminant removal, COD removal efficiencies were determined as 63.5% and 72.8% respectively for the Fe electrode (S2O8-2/COD ratio 1.25, current 4.14 A, pH 6, and reaction time 5 minutes), and the Al electrode (S2O8-2/COD ratio 0.5, current 4.25 A, pH 7.25, and reaction time 25 minutes). Electro-activated persulfate process is an appropriate treatment alternative for COD removal from paper industry wastewaters.Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2-2.5% in the oxidation ditches and 0.4-0.7% at the other plants. Heterotrophic nitrifying-aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.