Long-term afforestation has important implications on soil properties and quality in semi-arid areas. A large-scale afforestation project has been carried out in the Loess Plateau in the last 20 years. This work aims to study the afforestation (Robinia pseudoacacia, Caragana korshinskii and natural grassland recover 10, 20, 30, and 40 years after) impacts on soil properties and quality. The results showed that coverage and root biomass (RB) was the highest 30 years after the restoration in Robinia pseudoacacia and Caragana korshinskii treatments, while the highest 40 years post-restoration in natural grasslands. Sand content and BD showed the highest values 10 years post afforestation in all study areas. Clay, Silt, mean weight diameter (MWD), and geometric mean diameter (GMD) in Robinia pseudoacacia, Caragana korshinskii had the highest values 30 years after the afforestation, while in natural grasslands, this was observed 40 years after. In Robinia pseudoacacia, Caragana korshinskii treatments, soil moisture content (SMC) reached the highest levels 30 years post afforestation at 20-40 and 40-60 cm. Regarding natural grasslands, SMC had the highest values 40 years post-afforestation. Sand content and BD increased with soil depth, while the opposite was identified in RB, clay, silt, MWD, GMD and SMC. In Robinia pseudoacacia and Caragana korshinskii treatments, soil organic matter, total nitrogen, available nitrogen, total phosphorous, and available phosphorus had the highest levels 40 years post-restoration at 0-20 cm, while at 20-40 and 40-60 cm, the highest concentrations were identified 30 years after. In all the treatments, the soil quality index (SQI) was the highest 40 years post-restoration. The values of SQI were always higher in natural grasslands than in Robinia pseudoacacia and Caragana korshinskii treatments. Overall, natural recovery (natural grasslands) is more efficient than afforestation (Robinia pseudoacacia and Caragana korshinskii treatments) in soil quality.Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.Data on the concentration of particulate organic carbon (POC) and its endmembers provide a basis for the characterisation of lake biogeochemical cycles. Here, a novel remote sensing strategy (the SCPOC algorithm) was developed to determine total POC concentrations, as well as terrestrial and endogenous POC concentrations in lakes. This strategy provides a successful example for the combination of isotope tracer and remote sensing technology. First, we obtained the terrestrial and endogenous POC concentration at the sampling point based on isotope tracing technology. Afterwards, we established a relationship between the phytoplankton absorption coefficient and the endogenous POC concentration (Cend), and applied a semi-analytical algorithm to invert the Cend value. Finally, the POC source ratio model and Cend value were combined to obtain the POC concentration (CPOC) and terrestrial POC (Cter). The results of synchronisation verification based on ocean and land colour instrument (OLCI) images show that the SCPOC algorithm has high Cend, Cter, and CPOC inversion accuracy, with MAPE values of 26.07%, 30.43%, and 42.28%, respectively. In fact, the SCPOC algorithm not only improved the accuracy of lake POC mapping, but also fills the gap of optical retrieval of POC endmember concentrations. Additionally, data from the OLCI images indicated that the studied lakes were dominated by external POC. However, because of the greater contribution of algal blooms to POC, this dominant advantage weakens in summer, although the terrestrial organic carbon carried by rainfall runoff also affects lake POC composition. Different POC sources have different ecological roles in lakes, and the superior POC end-element estimation capability of the SCPOC algorithm can not only be used as a supplement to traditional tracing methods, but also provides accurate spatial data for lake management.The provenance, preponderance, mobilization/export potential, and environmental health effects of charred residues have been reviewed and discussed in the context of decoupling of biogeochemical DOC (and DON) cycling. The present review suggests that high anthropogenic inputs and enrichment of marine sediments by bulk terrigenous DOC (δ13C ~ -20‰ to -25‰) lead to high DOC/DON ratios (≥10), which correlate with seasonal hydrology and diagenetic events. The stability of refractory residues like pyrrole for black nitrogen (BN) and aromatic hydrocarbons for (BC) under pedogenic and diagenetic processes needs to be addressed, considering time lags between production and resuspension events. A variation in absolute values of δ15N (2.0 to 7.0‰) in organically sequestered marine sediments indicates complex sources of various nitrogen-enriched organic carbon (OC) and dynamic erosion processes. https://www.selleckchem.com/products/picropodophyllin-ppp.html These natural events are signified by an OC/DBN ratio of 13.3 ± 3.5, often explained by variations in precursor organic materials.