https://www.selleckchem.com/products/CGS-21680-hydrochloride.html Gene therapy strategies based on non-viral vectors are currently considered as a promising therapeutic option for the treatment of cystic fibrosis (CF), being liposomes the most commonly used gene carriers. Niosomes offer a powerful alternative to liposomes due to their higher stability and lower cytotoxicity, provided by their non-ionic surfactant and helper components. In this work, a three-formulation screening is performed, in terms of physicochemical and biological behavior, in CF patient derived airway epithelial cells. The most efficient niosome formulation reaches 28% of EGFP expressing live cells and follows caveolae-mediated endocytosis. Transfection with therapeutic cystic fibrosis transmembrane conductance regulator (CFTR) gene results in 5-fold increase of CFTR protein expression in transfected versus non-transfected cells, which leads to 1.5-fold increment of the chloride channel functionality. These findings highlight the relevance of niosome-based systems as an encouraging non-viral gene therapy platform with potential therapeutic benefits for CF.The production of polymer microfibres and nanofibres using rotary jet spinning as platforms for drug delivery and tissue engineering applications has been explored. The aligned orientation of fibres and consequent improvement in the mechanical properties of the scaffold are essential in several pharmaceutical and biomedical applications, where elastic materials with high tensile resistance are required. This study aimed to develop high-speed rotary jet devices to fabricate polyvinylpyrrolidone-based homopolymer and copolymer rotary-spun fibres and establish a correlation between the operational parameters of the devices and the morphology and microstructure of the fabricated fibres. Preconstruction modelling was carried out using computer-aided design through parametric 3D body modelling of the rotary device components by assigning appropriate