ions, especially in oncology. As a turbo spin-echo based technique, it can be applied in most challenging regions where SS-EPI is problematic.Patterns of low frequency brain-wide activity have drawn attention across multiple disciplines in neuroscience. https://www.selleckchem.com/products/ve-822.html Brain-wide activity patterns are often described through correlations, which capture concurrent increases and decreases in neural activity. More recently, several groups have described reproducible temporal sequences across the brain, illustrating precise long-distance control over the timing of low frequency activity. Features of correlation and temporal organization both point to a systems-level structure of brain activity consisting of large-scale networks and their mutual interactions. Yet a unified view for understanding large networks and their interactions remains elusive. Here, we propose a framework for computing probabilistic flow in brain-wide activity. We demonstrate how flow probabilities are modulated across rest and task states and show that the probabilistic perspective captures both intra- and inter-network dynamics. Finally, we suggest that a probabilistic framework may prove fruitful in characterizing low frequency brain-wide activity in health and disease.Previous research has consistently demonstrated that older adults have difficulties transforming recently learned movements into robust, long-lasting memories (i.e., motor memory consolidation). One potential avenue to enhance consolidation in older individuals is the administration of transcranial direct current stimulation (tDCS) to task-relevant brain regions after initial learning. Although this approach has shown promise, the underlying cerebral correlates have yet to be revealed. Moreover, it is unknown whether the effects of tDCS are lateralized, an open question with implications for rehabilitative approaches following predominantly unilateral neurological injuries. In this research, healthy older adults completed a sequential motor task before and 6 h after receiving anodal or sham stimulation to right or left primary motor cortex (M1) while functional magnetic resonance images were acquired. Unexpectedly, anodal stimulation to right M1 following left-hand sequence learning significantly hindered consolidation as compared to a sham control, whereas no differences were observed with left M1 stimulation following right-hand learning. Impaired performance following right M1 stimulation was paralleled by sustained engagement of regions known to be critical for early learning stages, including the caudate nucleus and the premotor and parietal cortices. Thus, post-learning tDCS in older adults not only exerts heterogenous effects across the two hemispheres but can also disrupt ongoing memory processing.There is increasing evidence that the hippocampus is involved in language production and verbal communication, although little is known about its possible role. According to one view, hippocampus contributes semantic memory to spoken language. Alternatively, hippocampus is involved in the processing the (mis)match between expected sensory consequences of speaking and the perceived speech feedback. In the current study, we re-analysed functional magnetic resonance (fMRI) data of two overt picture-naming studies to test whether hippocampus is involved in speech production and, if so, whether the results can distinguish between a "pure memory" versus a "prediction" account of hippocampal involvement. In both studies, participants overtly named pictures during scanning while hearing their own speech feedback unimpededly or impaired by a superimposed noise mask. Results showed decreased hippocampal activity when speech feedback was impaired, compared to when feedback was unimpeded. Further, we found increased functional coupling between auditory cortex and hippocampus during unimpeded speech feedback, compared to impaired feedback. Finally, we found significant functional coupling between a hippocampal/supplementary motor area (SMA) interaction term and auditory cortex, anterior cingulate cortex and cerebellum during overt picture naming, but not during listening to one's own pre-recorded voice. These findings indicate that hippocampus plays a role in speech production that is in accordance with a "prediction" view of hippocampal functioning.Shape analysis has been widely used in digital image processing and computer vision, but they have not been utilized to compare the structural characteristics of the human association pathways. Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and utilized them to study the morphology of human association pathways. The reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics showing either left or right dominance. The analysis of between-subject variations shows that the overall layout of the association pathways does not variate a lot across subjects, as shown by low between-subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature of population variations and their structure-function correlation.The aim of the current study was to longitudinally examine how adrenarcheal hormones influence the development of white matter structure from age 8.5 to 10 years. Participants were 120 children (66 female; mean age 8.45 years at Time 1 and 9.97 years at Time 2) who completed two diffusion-weighted imaging scans 1.5 years apart. Morning saliva samples were taken at both assessment time points to measure levels of dehydroepiandrosterone (DHEA), its sulphate (DHEAS), and testosterone. Fixel-based analysis was performed to examine how changes in white matter fibre density (FD) and cross-section (FC) over time were associated with initial levels of hormones, and changes in hormone levels over time. Both FD and FC increased over time in a wide range of white matter tracts. Increases in testosterone over time were related to relatively weaker increases in FC in the inferior fronto-occipital fasciculus. Levels and change in DHEA and DHEAS were not related to FD or FC changes. The results demonstrated development of white matter fibre density and cross-section from age 8.