https://www.selleckchem.com/products/ademetionine.html Humans encode proteins, called restriction factors, that inhibit replication of viruses such as HIV-1. The members of one family of antiviral proteins, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; shortened here to A3), act by deaminating cytidines to uridines during the reverse transcription reaction of HIV-1. The A3 locus encodes seven genes, named A3A to A3H These genes have either one or two cytidine deaminase domains, and several of these A3s potently restrict HIV-1. A3C, which has only a single cytidine deaminase domain, however, inhibits HIV-1 only very weakly. We tested novel double domain protein combinations by genetically linking two A3C genes to make a synthetic tandem domain protein. This protein created a "super restriction factor" that had more potent antiviral activity than the native A3C protein, which correlated with increased packaging into virions. Furthermore, disabling one of the active sites of the synthetic tandem domain protein resulted in an even greatedem domain and, furthermore, that the proteins thus generated are relatively resistant to the viral antagonist Vif. Together, these data give insights about how nature has evolved a defense against viral pathogens such as HIV. Copyright © 2020 McDonnell et al.A major challenge for RNA-seq analysis of gene expression is to achieve sufficient coverage of informative non-ribosomal transcripts. In eukaryotic samples, this is typically achieved by selective oligo(dT)-priming of messenger RNAs to exclude ribosomal RNA (rRNA) during cDNA synthesis. However, this strategy is not compatible with prokaryotes in which functional transcripts are generally not polyadenylated. To overcome this, we adopted DASH (Depletion of Abundant Sequences by Hybridization), initially developed for eukaryotic cells, to improve both the sensitivity and depth of bacterial RNA-seq. DASH employs the Cas9 nuclease to remove unwanted cDNA se