Blood parameters and serum biochemistry profile showed non-significant difference among groups. These results support that recombinant cellulolytic enzymes supplement high fiber diets improve their nutritional performance.As an emerging pollutant treatment material, hydrogel is known for its good adsorption capacity and environmental friendliness. In this study, a composite material of acrylic acid as the polymerization monomer grafted sodium lignosulfonate and guar gum was prepared, which provided a channel for adsorbing metal ions with its abundant active functional groups and porous structure. The optimized synthesized product was applied to the removal of Cu2+ and Co2+ in a one-component system and a multi-component system, and the maximum ion adsorption capacities obtained were determined to be 709 mg g-1 of Cu2+, 601 mg g-1 of Co2+, respectively. The adsorption kinetics and isotherms were well fitted by the pseudo second-order kinetic model and the Langmuir isotherm, showing that the adsorption of Cu2+ and Co2+ by the adsorbent belongs to the chemisorption on monolayer. XPS results confirmed the successful adsorption of Cu2+ and Co2+ by GG/SLS. Surface complexation was proposed to be the main mechanism for GG/SLS adsorbent to remove heavy metal ions. In addition, the use of recycling research showed that the adsorbent has good chemical stability. These results provided valuable information for designing highly efficient adsorbents that can be used as a high-quality wastewater treatment material.A dual stimuli-responsive nanoplatform was rationally designed for controlled drug delivery. The nanosheets of graphene oxide (GO) were first modified with aminated mesoporous silica (NH2-mSiO2), and then methotrexate (MTX) was loaded into the mesopores of mSiO2. Alginate (Alg) acted as the "gatekeeper" was then anchored to the MTX-loaded GO/NH2-mSiO2 by amidation reaction, achieving the encapsulation of MTX in the core-shell structured GO/mSiO2@Alg. Due to the high pH sensitivity of amide bond and the excellent photothermal conversion ability of GO, the constructed nanoplatform could be used for pH and near-infrared (NIR) controlled delivery of MTX. The results of cell viability test demonstrate the high inhibitory rate of the dual stimuli-responsive nanoplatform toward hepatoma (HepG2) cells.This work concerns how starch-protein interplay affects the multi-scale structures (e.g., short- and long-range orders, nanoscale structure and morphology) of starch undergoing thermal processing (pasting) involving heating and cooling at high water content. An indica rice starch (IRS) and three proteins (whey protein isolate, WPI; soy protein isolate, SPI; casein, CS) were used. By inspecting rheological profiles of mixed systems before and after adding chemicals, IRS-WPI and IRS-CS showed mainly hydrophobic molecular interaction; and IRS-SPI exhibited hydrophobic, hydrogen bonding and electrostatic interactions. The RVA results revealed that, with starch and proteins as controls, starch-globular protein (WPI or SPI) interplay accelerated the swelling of starch granules (faster viscosity increase at initial pasting stage), and reduced the paste stability during heating (higher breakdown) and during cooling (higher setback); however, the starch-casein interactions resulted in opposed effects. Moreover, starch-protein interactions varied the multi-scale chain reassembly of starch into different structures during cooling. Observed could be fewer short- and long-range starch orders, and larger nonperiod structure (or colloidal clusters) on the nanoscale. On even larger scale to micron, IRS-globular protein molecules generated larger grids (with reduced number) in the gel network, and IRS-casein formed a more continuous gel network with less prominent tunnel-like features.Penicillin G acylase (PGA) was an important biocatalyst for enzymatic production of second-generation cephalosporin. PGA from Achromobacter xylosoxidans PX02 (AxPGA) showed relatively lower identity to EcPGA (54.9% in α subunit and 51.7% in β subunit), which could synthesize cefamandole in the kinetically controlled N-acylation (kcNa). Semi-rational design of AxPGA and "small and smart" mutant libraries were developed with minimal screening to improve cefamandole production. A triple mutant αR141A/αF142I/βF24G by combining the mutational sites (βF24, αR141, and αF142) from different subunits of AxPGA showed better performance in cefamandole production, with 4.2-fold of improvement in the (kcat/Km)AD value for activated acyl donor (R)-Methyl mandelate. https://www.selleckchem.com/products/bpv-hopic.html Meanwhile, the (kcat/Km)Ps value for cefamandole by mutant αR141A/αF142I/βF24G was sharply dropped by 25.5 times, indicating its highly synthetic activity and extremely low hydrolysis of cefamandole. Strikingly, the triple mutant αR141A/αF142I/βF24G could form cefamandole with a yield of 85% at an economical substrate ratio (acyl donor/nucleophile) of 1.31 (82% at 1.11), which advanced the greener and more sustainable process of cefamandole production than the wild type. Furtherly, the improved synthetic ability and lower hydrolysis of cefamandole by mutant were rationalized using molecular docking.Covalent protein-ligation methods were used not only to visualize the localization of proteins of interest in cells, but also to study the topology of plasma and subcellular organelle membrane proteins using fluorescent cell imaging. A 13-amino-acid SpyTag (ST) peptide was genetically introduced either into a variety of subcellular proteins of interest or into different positions of plasma or subcellular organelle membrane proteins individually. Conversely, a 15 kDa SpyCatcher (SC) protein was chemically conjugated with either fluorescent dyes or horseradish peroxidase (HRP) via a thiol-maleimide reaction. The extracellular ST-fused plasma membrane proteins were efficiently labeled with the fluorescent-dye-conjugated SC in both live and permeabilized cells, whereas the intracellularly localized ST-fused subcellular proteins were only labeled in permeabilized cells because of the limited accessibility of the fluorescent-dye-conjugated SC to the membrane. The fluorescent-dye-labeled SC together with selective membrane-permeabilizing agents successfully labeled the plasma or the subcellular organelle membrane proteins in a topology-dependent manner.