https://www.selleckchem.com/products/epacadostat-incb024360.html Adipose tissue lipolysis was increased in GIPR KO compared with WT mice, particularly following β-adrenergic stimulation, and could explain why GIPR KO mice gain less adipose tissue despite increased rates of fatty acid storage in inguinal adipose tissue. Taken together, these results suggest that the GIPR is required for normal maintenance of body weight and adipose tissue mass by regulating energy expenditure and lipolysis.NEW & NOTEWORTHY GIPR KO mice fed a high-fat diet have reduced adiposity despite transporting more ingested lipids into adipose tissue. This can be partly explained by accelerated adipose tissue lipolysis and increased energy expenditure in GIPR KO mice. These new insights rationalize targeting the GIPR as part of a weight management strategy in obesity.Apigenin (API), a natural plant flavone, is abundantly found in common fruits and vegetables. As a bioactive flavonoid, API exhibits several activities including antiproliferation and anti-inflammation. A recent study showed that API could retard osteoporosis progress, indicating its role in the skeletal system. However, the detailed function and mechanism remain obscure. In the present study, API was found to promote osteogenic differentiation of mesenchymal stem cells (MSCs). And further investigation showed that API could enhance the expression of the critical transcription factor β-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/β-catenin signaling. Using a rat femoral fracture model, API was found to improve new bone formation and accelerate fracture healing in vivo. In conclusion, our data demonstrated that API could promote osteogenesis in vitro and facilitate the fracture healing in vivo via activating Wnt/β-catenin signaling, indicating that API may be a promising therapeutic candidate for bone fracture repair.NEW & NOTEWORTHY1) API promoted osteogenic differentiation of human MSCs in vitro;