Room-temperature gas sensors have emerged as effective platforms for sensing explosive or toxic gases in ambient environment. However, room-temperature gas sensor usually suffers from extremely poor sensitivity and sluggish response/recovery characteristics due to the low reacting activity at low temperature. Herein, we present a room-temperature NO2 sensor with greatly enhanced sensitivity and rapid response/recovery speed under ultraviolet (UV) illumination. The sensor based on In2O3/ZnO yolk-shell nanofibers exhibits remarkable sensitivity (Rg/Ra = 6.0) to 1 ppm NO2 and rapid response/recovery time (≤36, 68 s) under UV illumination, obviously better than negligible sensing performance and inefficient response/recovery properties in dark condition. Such excellent gas sensing properties of the In2O3/ZnO yolk-shell nanofibers were not only attributed to the improved photo-generated charge separation efficiency derived from the effect of heterojunction, but also related to the enhanced receptor function towards NO2 endowed by increased reactive sites and gas adsorption. These proposed strategies will provide a reference for developing high-performance room-temperature gas sensors.Fast and efficient cleanup of high-viscosity oil spills on the sea is still a global challenge today. Traditional recycling methods are either energy demanding or inefficient. Hydrophobic/oleophilic sorbents are promising candidates to handle oil spills, but they have limited ability to recover high viscosity oil. In this work, we report a superhydrophobic/oleophilic carbon nanotubes (CNT) and polypyrrole (PPy) coated melamine sponge (m-CNT/PPy@MS). https://www.selleckchem.com/products/CUDC-101.html The CNT/PPy coating enables the sponge to convert light and electricity to heat, ensuring that the absorbent can adapt to various working environments. The rapid heat generation on the sponge surface can significantly reduce the viscosity of crude oil and accelerate the absorption rate, thereby achieving the purpose of rapid recovery of oil spills. Under one sun illumination (1.0 kW/m2) and an applied voltage (8 V), the surface temperature of the m-CNT/PPy@MS can reach 118.6 °C. The complete penetration time of oil droplets is 93.5% less than that of an unheated sponge. In addition, under half sun irradiation intensity and 11 V, the porous sponge absorbed 6.92kg/m2 of crude oil in the first minute, which is about 31 times as much as that of an unheated sponge. Finally, we demonstrate a continuous absorption system, consisting of a self-heating m-CNT/PPy@MS and peristaltic pump, that can continuously recover oil spills on the sea surface. In view of its unique design, lower cost and fast oil absorption speed, this work provides a new option to tackle large-scale oil spill disasters on the sea surface.Persulfate (PS) activated by dielectric barrier discharge (DBD) integrated with microbubbles (MBs) was designed to decompose atrazine (ATZ) from aqueous solutions. The degradation efficiency reached 89% at a discharge power of 85W, a PS concentration of 1mM, and a air flow rate of 30mL/min after 75min treatment. Heat caused by DBD favoured ATZ removal. Besides, the effect of PS dosage, discharge power and initial pH values on ATZ removal was evaluated. The calculated energy yield revealed that it was economical and promising to treat 1L of ATZ-wastewaters. The existence of SO42-, Cl-, CO32- and HCO3- lead to negative effects, while positive effect was observed when the presence of MBs and humic acid. The identification results of radicals and degradation intermediates suggested that multiple synergistic effects (such as heat, eaq- and H•) activated PS, and 1O2/reactive nitrogen species, •OH and SO4-• with contributions of 18%, 26%, and 29%, were main species attacking ATZ. ATZ degradation pathways including olefination, alkylic-oxidation, dealkylation, and dechlorination were proposed. An environment-friendly and a novel method for enhancing the PS-activation and ATZ-decomposition was provided, which fully utilised the electric-chemical conversion of DBD and high mass transfer efficiency of MBs.The effects of noble metal (M = Ag, Au, Pd, Pt, and Rh) on CeO2 in enhancing the activity toward soot oxidation were studied through experimental methods and density functional theory (DFT) calculations. Each noble metal (3 mol.%) was supported on CeO2 (M/CeO2) and the properties of the catalysts were verified by XRD, HRTEM, N2 physisorption, CO chemisorption, XPS, and H2-TPR results. The noble metal was highly dispersed over CeO2, except for Au due to the sintering of Au, and the reducibility of the catalysts was greatly improved according to degree of the interaction between each noble metal and CeO2. The activities of M/CeO2 catalysts for soot oxidation were better than that of CeO2, and followed the order Rh/CeO2 > Ag/CeO2 > Pt/CeO2 > Au/CeO2 > Pd/CeO2 > CeO2. Moreover, our DFT calculations showed that vacancy formation energy was gradually lowered in the following order CeO2 > Pd4/CeO2 > Pt4/CeO2 > Au4/CeO2 = Ag4/CeO2 > Rh4/CeO2, which was similar order with experimental activity. In addition, the electronic states of the p and f orbitals of CeO2 were studied to compare with the occupied Ce 4f electrons, which affect the redox property. Rh/CeO2 and Ag/CeO2 showed the improved soot oxidation activity, with an enhanced ability to generate oxygen vacancy formation and oxygen adsorption and increased electron transfer. Consequently, the experimental and DFT calculation results revealed the roles of noble metals on ceria with respect to catalytic activity.Finger millet, a vital nutritional cereal crop provides food security. It is a well-established fact that silicon (Si) supplementation to plants alleviates both biotic and abiotic stresses. However, precise molecular targets of Si remain elusive. The present study attempts to understand the alterations in the metabolic pathways after Si amendment under osmotic stress. The analysis of transcriptome and metabolome of finger millet seedlings treated with distilled water (DW) as control, Si (10 ppm), PEG (15%), and PEG (15%) + Si (10 ppm) suggest the molecular alterations mediated by Si for ameliorating the osmotic stress. Under osmotic stress, uptake of Si has increased mediating the diversion of an enhanced pool of acetyl CoA to lipid biosynthesis and down-regulation of TCA catabolism. The membrane lipid damage reduced significantly by Si under osmotic stress. A significant decrease in linolenic acid and an increase of jasmonic acid (JA) in PEG + Si treatment suggest the JA mediated regulation of osmotic stress.