https://www.selleckchem.com/products/bay-2416964.html Spatiotemporal control over the intensity of a laser pulse has the potential to enable or revolutionize a wide range of laser-based applications that currently suffer from the poor flexibility offered by conventional optics. Specifically, these optics limit the region of high intensity to the Rayleigh range and provide little to no control over the trajectory of the peak intensity. Here, we introduce a nonlinear technique for spatiotemporal control, the "self-flying focus," that produces an arbitrary trajectory intensity peak that can be sustained for distances comparable to the focal length. The technique combines temporal pulse shaping and the inherent nonlinearity of a medium to customize the time and location at which each temporal slice within the pulse comes to its focus. As an example of its utility, simulations show that the self-flying focus can form a highly uniform, meter-scale plasma suitable for advanced plasma-based accelerators.The performance of a high-speed intensity-modulation (IM)/direct-detection (DD) transmission system could be limited by the bandwidth of optical transceivers. One popular way to cope with this performance limitation is to utilize the maximum likelihood sequence estimation (MLSE) at the receiver. However, a practical problem of MLSE is its high implementation complexity. Even though the channel impulse response can be truncated by using a two-tap filter before applying the MLSE, it still faces an implementation problem when used for multi-level modulation formats. In this paper, we propose and demonstrate a reduced-state MLSE for band-limited IM/DD transmission systems using M-ary pulse amplitude modulation (PAM-M) formats. We use a conventional Viterbi algorithm to search a reduced-state trellis, which is constructed by using the coarse pre-decision of the signal equalized by a feed-forward equalizer. Thus, the proposed MLSE reduces the implementation complexity significantl