Pathogenic variants in PHD finger protein 6 (PHF6) cause Borjeson-Forssman-Lehmann syndrome (BFLS), a rare X-linked neurodevelopmental disorder, which manifests variably in both males and females. To investigate the mechanisms behind overlapping but distinct clinical aspects between genders, we assessed the consequences of individual variants with structural modelling and molecular techniques. We found evidence that de novo variants occurring in females are more severe and result in loss of PHF6, while inherited variants identified in males might be hypomorph or have weaker effects on protein stability. This might contribute to the different phenotypes in male versus female individuals with BFLS. Furthermore, we used CRISPR/Cas9 to induce knockout of PHF6 in SK-N-BE (2) cells which were then differentiated to neuron-like cells in order to model nervous system related consequences of PHF6 loss. Transcriptome analysis revealed a broad deregulation of genes involved in chromatin and transcriptional regulation as well as in axon and neuron development. Subsequently, we could demonstrate that PHF6 is indeed required for proper neuron proliferation, neurite outgrowth and migration. Impairment of these processes might therefore contribute to the neurodevelopmental and cognitive dysfunction in BFLS.In children, soil-transmitted helminth infections have been linked to poor nutritional status and growth retardation in association with lower levels of IGF-1. In adults, IGF-1 has an anabolic and metabolic function and is related to nutritional status. Here, we assessed the impact of helminth infection on free IGF-1 and its major binding protein, IGFBP-3, in adults. The levels of IGF-1 and IGFBP3 were measured in 1669 subjects aged ≥ 16 years, before and after receiving four rounds of albendazole 400 mg/day or matching placebo for three consecutive days. Helminth infection status was assessed by microscopy (Kato-Katz) and PCR. Serum free IGF-1 level was significantly lower in helminth-infected subjects [mean difference and 95% CI - 0.068 (- 0.103; - 0.033), P  less then  0.001 after adjustment for age, sex, body mass index, and fasting insulin level]. There was no difference in IGFBP-3 level between helminth infected versus non-infected subjects. In the whole study population, albendazole treatment significantly increased serum free IGF-1 level [estimate and 95% CI 0.031 (0.004; - 0.057), P = 0.024] whereas no effect was found on the IGFBP-3 level. https://www.selleckchem.com/products/sbfi-26.html Our study showed that helminth infection in adults is associated with lower free IGF-1 levels but not with IGFBP-3 and albendazole treatment significantly increases free IGF-1 levels in the study population.Clinical Trial Registration https//www.isrctn.com/ISRCTN75636394 .Differentiation of mesenchymal stem cells (MSCs) derived from two different sources of fetal tissues such as umbilical cord blood (UCB) and tissue (UCT) into skeletal muscle have remained underexplored. Here, we present a comparative analysis of UCB and UCT MSCs, in terms of surface markers, proliferation and senescence marker expression. We find that CD45-CD34- MSCs obtained from UCT and UCB of term births display differences in the combinatorial expression of key MSC markers CD105 and CD90. Importantly, UCT MSCs display greater yield, higher purity, shorter culture time, and lower rates of senescence in culture compared to UCB MSCs. Using a robust myogenic differentiation protocol, we show that UCT MSCs differentiate more robustly into muscle than UCB MSCs by transcriptomic sequencing and specific myogenic markers. Functional assays reveal that CD90, and not CD105 expression promotes myogenic differentiation in MSCs and could explain the enhanced myogenic potential of UCT MSCs. These results suggest that in comparison to large volumes of UCB that are routinely used to obtain MSCs and with limited success, UCT is a more reliable, robust, and convenient source of MSCs to derive cells of the myogenic lineage for both therapeutic purposes and increasing our understanding of developmental processes.Transforming growth factor-β1 (TGF-β1) plays a premier role in fibrosis. To understand the molecular events underpinning TGF-β1-induced fibrogenesis, we examined the proteomic profiling of a TGF-β1-induced in vitro model of fibrosis in NRK-49F normal rat kidney fibroblasts. Mass spectrometric analysis indicated that 628 cell-lysate proteins enriched in 44 cellular component clusters, 24 biological processes and 27 molecular functions were regulated by TGF-β1. Cell-lysate proteins regulated by TGF-β1 were characterised by increased ribosomal proteins and dysregulated proteins involved in multiple metabolic pathways, including reduced Aldh3a1 and induced Enpp1 and Impdh2, which were validated by enzyme-linked immunosorbent assays (ELISA). In conditioned media, 62 proteins enriched in 20 cellular component clusters, 40 biological processes and 7 molecular functions were regulated by TGF-β1. Secretomic analysis and ELISA uncovered dysregulated collagen degradation regulators (induced PAI-1 and reduced Mmp3), collagen crosslinker (induced Plod2), signalling molecules (induced Ccn1, Ccn2 and Tsku, and reduced Ccn3) and chemokines (induced Ccl2 and Ccl7) in the TGF-β1 group. We conclude that TGF-β1-induced fibrogenesis in renal fibroblasts is an intracellular metabolic disorder and is inherently coupled with inflammation mediated by chemokines. Proteomic profiling established in this project may guide development of novel anti-fibrotic therapies in a network pharmacology approach.Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130-180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked "fast" theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to "fast" theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side.