Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C-N couplings, as well as Pauson-Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. https://www.selleckchem.com/products/ca-170.html We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.The discovery of building blocks offers new opportunities to develop and control properties of extended solids. Compounds with fluorite-type Bi2O2 blocks host various properties including lead-free ferroelectrics and photocatalysts. In this study, we show that triple-layered Bi2MO4 blocks (M = Bi, La, Y) in Bi2MO4Cl allow, unlike double-layered Bi2O2 blocks, to extensively control the conduction band. Depending on M, the Bi2MO4 block is truncated by Bi-O bond breaking, resulting in a series of n-zigzag chain structures (n = 1, 2, ∞ for M = Bi, La, Y, respectively). Thus, formed chain structures are responsible for the variation in the conduction band minimum (-0.36 to -0.94 V vs SHE), which is correlated to the presence or absence of mirror symmetry at Bi. Bi2YO4Cl shows higher photoconductivity than the most efficient Bi2O2-based photocatalyst with promising visible-light photocatalytic activity for water splitting. This study expands the possibilities of thickening (2D to 3D) and cutting (2D to 1D) fluorite-based blocks toward desired photocatalysis and other functions.Biomembranes constitute a basis for all compartments of live cells, and therefore, the monitoring of their lipid organization is essential for understanding cell status and activity. However, the sensing and imaging of lipid organization specifically in different organelles of live cells remain challenging. Here, we designed an array of solvatochromic probes based on Nile Red bearing ligands for specific targeting of the endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, plasma membranes, and lipid droplets. These polarity-sensitive probes detected variations in the lipid order by changing their emission maximum, as evidenced by fluorescence spectroscopy in model membranes. In colocalization microscopy experiments with reference organelle markers, they exhibited good organelle selectivity. Using two-color fluorescence microscopy, the new probes enabled imaging of the local polarity of organelles in live cells. To exclude the biased effect of the probe design on the sensitivity to the membrane properties, we calibrated all probes in model membranes under the microscope, which enabled the first quantitative description of the lipid order in each organelle of interest. Cholesterol extraction/enrichment confirmed the capacity of the probes to sense the lipid order, revealing that organelles poor in cholesterol are particularly affected by its enrichment. The probes also revealed that oxidative and mechanical stresses produced changes in the local polarity and lipid order that were characteristic for each organelle, with mitochondria and lysosomes being particularly stress sensitive. The new probes constitute a powerful toolbox for monitoring the response of the cells to physical and chemical stimuli at the level of membranes of individual organelles, which remains an underexplored direction in cellular research.Particle phase state is a property of atmospheric aerosols that has important implications for the formation, evolution, and gas/particle partitioning of secondary organic aerosol (SOA). In this work, we use a size-resolved chemistry and microphysics model (Statistical Oxidation Model coupled to the TwO Moment Aerosol Sectional (SOM-TOMAS)), updated to include an explicit treatment of particle phase state, to constrain the bulk diffusion coefficient (Db) of SOA produced from α-pinene ozonolysis. By leveraging data from laboratory experiments performed in the absence of a seed and under dry conditions, we find that the Db for SOA can be constrained ((1-7) × 10-15 cm2 s-1 in these experiments) by simultaneously reproducing the time-varying SOA mass concentrations and the evolution of the particle size distribution. Another version of our model that used the predicted SOA composition to calculate the glass-transition temperature, viscosity, and, ultimately, Db (∼10-15 cm2 s-1) of the SOA was able to reproduce the mass and size distribution measurements when we included oligomer formation (oligomers accounted for about a fifth of the SOA mass). Our work highlights the potential of a size-resolved SOA model to constrain the particle phase state of SOA using historical measurements of the evolution of the particle size distribution.Fluorescent agents play an important role in the peroxyoxalate chemiluminescence system. However, the effect of different frameworks on chemiluminescence (CL) has not been explored. Herein two pyrene-based metal-organic frameworks (MOFs), [Pb2L] n ·2nDMA·2nH2O (1) and [(Ca2L)·(DMF)3] n ·2.5nDMF·6nH2O (2) (H4L = 5,5'-(-pyrene-1,6-diyl)-diisophthalic acid; DMA = N,N'-dimethylacetamide; DMF = N,N'-dimethylformamide), have been successfully synthesized and are applied to CL. They both exhibit strong and lasting emission that is visible to the naked eye and is significantly stronger than that of the ligand. More importantly, compared with 2, 1 has notably better CL performance. We infer that the reason may be that 1 has higher stability and larger open channels, which can avoid the aggregation of organic ligands as well as provide an effective pathway for the active substance to diffuse into the channels.This study aimed to examine the combined use of bone morphogenetic protein-2 (BMP-2) and polysaccharide isolated from Stichopus japonicus on osteogenic differentiation of MC3T3-E1 cells. Osteogenic differentiation was measured via histochemical staining of alkaline phosphatase (ALP) assay, alizarin red staining of mineralization assay, Western blotting, ELISA, and a qRT-PCR evaluation for the expression of BMP-2, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), osteopontin (OPN), and collagen type I (Col I) in MC3T3-E1 cells. Immunofluorescence assay was utilized to assess the BMP-2 localized on the cell surface. The results illustrated that SP-2 was able to increase ALP expression and accelerate the mineralization. Osteoblasts cultured on BMP-2/SP-2 substrate increased the expression levels of BMP-2, Runx-2, Col I, OCN, and OPN. SP-2 increased the binding efficiency involving a BMP-2 and its cell surface receptor. The dose of 5 μg/mL SP-2 used showed the best function of inducing osteoblast differentiation.