https://www.selleckchem.com/products/acetalax-oxyphenisatin-acetate.html Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs. Operational and financial constraints challenge effective removal of natural organic matter (NOM), and specifically disinfection by-product (DBP) precursors, at remote and/or small sites. Granular activated carbon (GAC) is a widely used treatment option for such locations, due to its relatively low maintenance and process operational simplicity. However, its efficacy is highly dependent on the media capacity for the organic matter, which in turn depends on the media characteristics. The influence of GAC media properties on NOM/DBP precursor removal has been studied using a range of established and emerging media using both batch adsorption tests and