https://www.selleckchem.com/products/Adrucil(Fluorouracil).html Rational designs and syntheses for advanced structures are of immense importance to enhance adsorption performances toward a variety of materials. In this study, the synthesis of a novel hierarchical hollow manganese-magnesium-aluminum ternary metal oxide (MMA) via a green hydrothermal strategy coupled with a calcination process serves as a robust adsorbent for fluoride elimination. Combining the strong affinities Mn, Mg, and Al species have toward fluoride into a 3D-hierarchical hollow structure with an adequately accessible adsorption surface can remarkably boost the migration and diffusion of fluoride and provide more mass diffusion pathways for fluoride elimination. Remarkably, the adsorption process follows the pseudo-second-order model and the Langmuir isotherm model with a considerable performance of 63.05 mg/g. Moreover, the adsorbent retained outstanding selectivity and recyclability. Overall, the results from the universal characterization techniques and batch experiments validate that the potential adsorption mechanisms were electrostatic attraction and ion exchange, and complexation. As such, the present method expands the current adsorbent toolbox by providing a rational design and synthesis of a highly efficient adsorbent material for use in managing environmental pollution.The pharmaceutical and personal care products (PPCPs) in aquatic environment have aroused more interest recently. Many of them are hard to degrade by the typical biological treatments. Diclofenac (DCF), as a significant anti-inflammatory drug, is a typical PPCP and widely existed in water environment. It is reported that DCF has adverse effects on aquatic organisms. This work aims to investigate the mechanism, kinetics and ecotoxicity assessment of DCF transformation initiated by O3 in aqueous solution, and provide a solution to the degradation of DCF. The O3-initiated oxidative degradations of DCF were performed by qua