https://www.selleckchem.com/products/abraxane-nab-paclitaxel.html Life cycle assessment (LCA) is conducive to the change in the wind power industry management model and is beneficial to the green design of products. Nowadays, none of the LCA systems are for wind turbines and the concept of Internet of Things (IoT) in LCA is quite a new idea. In this paper, a four-layer LCA platform of wind turbines based on IoT architecture is designed and discussed. In the data transmission layer, intelligent sensing of wind turbines can be achieved and their status and location can be monitored. In the data transmission layer, the LCA platform can be effectively integrated with enterprise information systems through the object name service (ONS) and directory service (DS). In the platform layer, a model based on IMPACT 2002+ is developed, and four management modules are designed. In the application layer, different from other systems, energy payback time (EPBT) is selected as an important evaluation index for wind turbines. Compared with the existing LCA systems, the proposed system is specifically for wind turbines and can collect data in real-time, leading to improved accuracy and response time.To counteract the growing bacterial resistance, we previously reported the remarkable antimicrobial activity of amino acid-conjugated cationic dendrimers (CDs) against several Gram-negative species, establishing that the cationic lysine was essential for their potency. In this paper, CDs conjugated with lysine and arginine and encapsulating ursolic and oleanolic acids (UOACDs) were assumed to be excellent candidates for developing new antibacterial agents, possibly active against Gram-positive species. Indeed, both the guanidine group of arginine and the two triterpenoid acids are items known for directing antibacterial effects, particularly against Gram-positive bacteria. The cationic dendrimers were obtained by peripheral conjugation with the selected amino acids and by entrapping a phy