https://www.selleckchem.com/products/sndx-5613.html Iron loading in some brain regions occurs in Parkinson's Disease (PD), and it has been considered that its removal by iron chelators could be an appropriate therapeutic approach. Since neuroinflammation with microgliosis is also a common feature of PD, it is possible that iron is sequestered within cells as a result of the "anaemia of chronic disease" and remains unavailable to the chelator. In this review, the extent of neuroinflammation in PD is discussed together with the role played by glia cells, specifically microglia and astrocytes, in controlling iron metabolism during inflammation, together with the results of MRI studies. The current use of chelators in clinical medicine is presented together with a discussion of two clinical trials of PD patients where an iron chelator was administered and showed encouraging results. It is proposed that the use of anti-inflammatory drugs combined with an iron chelator might be a better approach to increase chelator efficacy.Indomethacin (IM) is a small molecule active pharmaceutical ingredient (API) that exhibits polymorphism with the γ-form being the most thermodynamically stable form of the drug. The α-form is metastable, but it exhibits higher solubility, making it a more attractive form for drug delivery. As with other metastable polymorphs, α-IM undergoes interconversion to the stable form when subjected to certain stimuli, such as solvent, heat, pH, or exposure to seed crystals of the stable form. In this study, IM was crystallized into cellulose nanocrystal aerogel scaffolds as a mixture of the two polymorphic forms, α-IM and γ-IM. Differential scanning calorimetry (DSC) and Raman spectroscopy were used to quantitatively determine the amount of each form. Our investigation found that the metastable α-IM could be stabilized within the aerogel without phase transformation, even in the presence of external stimuli, including heat and γ-IM seed crystals. Because inter