https://www.selleckchem.com/products/gsk2334470.html All the training data, models and code for PSSR are publicly available at 3DEM.org.In humans, brain oscillations support critical features of memory formation. However, understanding the molecular mechanisms underlying this activity remains a major challenge. Here, we measured memory-sensitive oscillations using intracranial electroencephalography recordings from the temporal cortex of patients performing an episodic memory task. When these patients subsequently underwent resection, we employed transcriptomics on the temporal cortex to link gene expression with brain oscillations and identified genes correlated with oscillatory signatures of memory formation across six frequency bands. A co-expression analysis isolated oscillatory signature-specific modules associated with neuropsychiatric disorders and ion channel activity, with highly correlated genes exhibiting strong connectivity within these modules. Using single-nucleus transcriptomics, we further revealed that these modules are enriched for specific classes of both excitatory and inhibitory neurons, and immunohistochemistry confirmed expression of highly correlated genes. This unprecedented dataset of patient-specific brain oscillations coupled to genomics unlocks new insights into the genetic mechanisms that support memory encoding.Dopamine prediction error responses are essential components of universal learning mechanisms. However, it is unknown whether individual dopamine neurons reflect the shape of reward distributions. Here, we used symmetrical distributions with differently weighted tails to investigate how the frequency of rewards and reward prediction errors influence dopamine signals. Rare rewards amplified dopamine responses, even when conventional prediction errors were identical, indicating a mechanism for learning the complexities of real-world incentives.In humans, tissue injury and depression can both cause pain hypersensitivity, but whethe