https://www.selleckchem.com/products/cfi-400945.html The feasibility of using activity-directed synthesis to drive antibacterial discovery was investigated. An array of 220 Pd-catalysed microscale reactions was executed, and the crude product mixtures were evaluated for activity against Staphylococcus aureus. Scale-up of the hit reactions, purification and evaluation, enabled expansion of a class of antibacterial quinazolinones. The novel antibacterials had MICs from 0.016 μg mL-1 (i.e. 38 nM) to 2-4 μg mL-1 against S. aureus ATCC29213.Dissociative ionization of trifluoromethane (CHF3) is investigated in the 13.9-18.0 eV energy range using the threshold photoelectron-photoion coincidence (TPEPICO) technique coupled to a vacuum ultraviolet synchrotron radiation source. Four electronic states of CHF3+, i.e., the X2A1, A2A2, B2E, and C2E states, are populated upon ionization. In this energy range, the parent CHF3+ ions fully dissociate. For the CHF3+ ions in the ground state, the analysis of the time-of-flight profile of the unique CF3+ fragment ions suggests statistical dissociation. For the electronically excited CHF3+ ions, the C-F bond cleavage preferentially occurs to predominantly produce CHF2+ + F. Moreover, all TPEPICO images of the CHF2+ ions exhibit identical patterns, with a weak central spot revealing a previously unobserved statistical decomposition pathway, and the predominant ring in the images documents a fast nonstatistical dissociation channel. The unimolecular decomposition mechanisms of the CHF3+ ions are illuminated with the aid of the one-dimensional potential energy curves along the C-H and C-F coordinates calculated using the time-dependent density-functional theory. Moreover, a comparison of the dissociation dynamics of CHF3+ in these low-lying states with those of CF3Cl+ strongly suggests a substituent effect of chlorine atoms on the binding structure.Toxins are one of the major threatening factors to human and animal health, as well as econom