In addition, the application of externally applied lower punch vibration led to a pronounced decrease of the capping or lamination tendency and improved mechanical stability of the manufactured tablets. Janus nanoparticles (JNP) are innovative nanocarriers with an interesting pharmaceutical and cosmetic potential. They are characterized by the presence of a lipid compartment associated with an aqueous compartment delimited by a phospholipid bilayer containing phospholipids and non-ionic surfactants. The hydrodynamic diameter of JNP varies between 150 and 300 nm. The purpose of this study was to answer the following questions after cutaneous application, are JNP penetrating? If so, how deep? And in which state, intact or degraded? It was essential to understand these phenomena in order to control the rate and kinetics of diffusion of active ingredients, which can be encapsulated in this vehicle for pharmaceutical or cosmetic purposes. An innovative technique called AFM-IR, was used to elucidate the behavior of JNP after cutaneous application. This instrument, coupling atomic force microscopy and IR spectroscopy, allowing to perform chemical analysis at the nanometer scale thanks to local absorption measurements. The identification of organic molecules at the nanoscale is possible without any labelling. Before cutaneous application of JNP, the nano-structure of untreated human skin was investigated with AFM-IR. Then, in vitro human skin penetration of JNP was studied using Franz cells, and AFM-IR allowed us to perform ultra-local information investigations. The epithelial permeation of water-soluble fluorescent PAMAM dendrons based on 7H-benz[de] benzimidazo [2,1-a] isoquinoline-7-one as a fluorescent core across epithelial cell models MDCK I and MDCK II has been quantified. Hydrodynamic radii have been derived from self-diffusion coefficients obtained via pulsed-gradient spin-echo Nuclear Magnetic Resonance (PGSE-NMR). Results indicate that these dendritic molecules are molecularly disperse, non-aggregating, and only slightly larger than their parent homologues. MDCK I permeability studies across epithelial barriers show that these dendritic molecules are biocompatible with the chosen epithelial in-vitro model and can permeate across MDCK cell monolayers. Permeability is demonstrated to be a property of dendritic size and cell barrier restrictiveness indicating that paracellular mechanisms play the predominant role in the transport of these molecules. Senicapoc (SEN), a potent antisickling agent, shows poor water solubility and poor oral bioavailability. To improve the solubility and cell permeation of SEN, self-nanoemulsifying drug delivery systems (SNEDDSs) were developed. Capryol PGMC®, which showed the highest solubilization capacity, was selected as the oil. The self-emulsification ability of two surfactants, viz., Cremophor-EL® and Tween® 80, was compared. Based on a solubility study and ternary phase diagrams, three optimized nanoemulsions with droplet sizes less than 200 nm were prepared. An in vitro dissolution study demonstrated the superior performance of the SNEDDS over the free drug. During in vitro lipolysis, 80% of SEN loaded in the SNEDDS remained solubilized. An in vitro cytotoxicity study using the Caco-2 cell line indicated the safety of the formulations at 1 mg/mL. https://www.selleckchem.com/products/ca-170.html The transport of SEN-SNEDDSs across Caco-2 monolayers was enhanced 115-fold (p  less then  0.01) compared to that of the free drug. According to these results, SNEDDS formulations could be promising tools for the oral delivery of SEN. Brain delivery of nanoparticles and macromolecular drugs depends on blood-brain barrier (BBB)-permeable carriers. In this study, we searched for cyclic heptapeptides facilitating BBB permeation of M13 phages by phage library screening using a transcellular permeability assay with hCMEC/D3 cell monolayers, a human BBB model. The M13 phage, which is larger than macromolecular drugs and nanoparticles, served as a model macromolecule. The screen identified cyclic heptapeptide SLSHSPQ (SLS) as a human BBB-permeable peptide. The SLS-displaying phage (SLS-phage) exhibited improved permeation across the cell monolayer of monkey and rat BBB co-culture models. The SLS-phage internalized into hCMEC/D3 cells via macropinocytosis and externalized via the exosome excretion pathway. SLS-phage distribution into brain parenchyma was observed in mice after intravenous administration. Moreover, liposome permeated across the BBB as cyclic SLS peptide conjugates. In conclusion, the cyclic SLS heptapeptide is a novel carrier candidate for brain delivery of macromolecular drugs and nanoparticles. The rapid dissemination of life-threatening multidrug-resistant bacterial pathogens calls for the development of new antibacterial agents and alternative strategies. The virulence factor secreted by bacteria plays a crucial role in the sophisticated processes during infections. Inspired by the unique capacity of many bacteria inducing clotting of plasma to initiate colonization, we propose a programmable antibiotic delivery system for precision therapy using methicillin-resistant S. aureus (MRSA) as a model. Coagulase utilized by MRSA to directly cleave fibrinogen into fibrin, is an ideal target not only for tracking bacterial status but for triggering the collapse of fibrinogen functionalized porous microspheres. Subsequently, staphylokinase, another virulence factor of MRSA, catalyzed hydrolysis of fibrin to further release the encapsulated antibiotics from microspheres. Our sequential triggered-release system exhibits high selectivity to distinguish live or dead MRSA from other pathogenic bacteria. Furthermore, such programmable microspheres clear 99% MRSA in 4 h, and show increased efficiency in a wound healing model in rats. Our study provides a programmable drug delivery system to precisely target bacterial pathogens using their intrinsic enzymatic cascades. This programmable platform with reduced selective stress of antibiotics on microbiota sheds light on the potential therapy for future clinical applications. Liver fibrosis leads to over one million deaths annually worldwide. Hepatic stellate cells (HSCs) have been identified as the main executors of liver fibrosis. Unfortunately, no drug has yet been approved for clinical use against liver fibrosis, largely because the tested drugs have been unable to access HSCs and efficiently remove the collagen accumulation involved in fibrogenesis. Here, we designed an efficient HSC-targeting lipid delivery system that carried dual siRNAs intended to both inhibit collagen synthesis and promote collagen degradation, with the goal of realizing enhanced anti-liver fibrosis by bidirectional regulation of collagen accumulation. The delivery system was constructed by using amphiphilic cationic hyperbranched lipoids (C15-PA) for siRNA complexation and helper lipoids (cholesterol-polyethylene glycol-vitamin A, Chol-PEG-VA) for HSCs targeting. The generated vitamin A-decorated and hyperbranched lipoid-based lipid nanoparticles (VLNPs) showed excellent gene-binding ability and transfection efficiency, and enhanced the delivery of siRNAs to HSCs.