The integration and interaction of vision, touch, hearing, smell, and taste in the human multisensory neural network facilitate high-level cognitive functionalities, such as crossmodal integration, recognition, and imagination for accurate evaluation and comprehensive understanding of the multimodal world. Here, we report a bioinspired multisensory neural network that integrates artificial optic, afferent, auditory, and simulated olfactory and gustatory sensory nerves. With distributed multiple sensors and biomimetic hierarchical architectures, our system can not only sense, process, and memorize multimodal information, but also fuse multisensory data at hardware and software level. Using crossmodal learning, the system is capable of crossmodally recognizing and imagining multimodal information, such as visualizing alphabet letters upon handwritten input, recognizing multimodal visual/smell/taste information or imagining a never-seen picture when hearing its description. Our multisensory neural network provides a promising approach towards robotic sensing and perception.While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.Conditional gene inactivation is a powerful tool to determine gene function when constitutive mutations result in detrimental effects. The most commonly used technique to achieve conditional gene inactivation employs the Cre/loxP system and its ability to delete DNA sequences flanked by two loxP sites. However, targeting a gene with two loxP sites is time and labor consuming. Here, we show Cre-Controlled CRISPR (3C) mutagenesis to circumvent these issues. 3C relies on gRNA and Cre-dependent Cas9-GFP expression from the same transgene. Exogenous or transgenic supply of Cre results in Cas9-GFP expression and subsequent mutagenesis of the gene of interest. The recombined cells become fluorescently visible enabling their isolation and subjection to various omics techniques. Hence, 3C mutagenesis provides a valuable alternative to the production of loxP-flanked alleles. It might even enable the conditional inactivation of multiple genes simultaneously and should be applicable to other model organisms amenable to single integration transgenesis.Early-life adversity (ELA) is a major predictor of psychopathology, and is thought to increase lifetime risk by epigenetically regulating the genome. Here, focusing on the lateral amygdala, a major brain site for emotional homeostasis, we describe molecular cross-talk among multiple mechanisms of genomic regulation, including 6 histone marks and DNA methylation, and the transcriptome, in subjects with a history of ELA and controls. In the healthy brain tissue, we first uncover interactions between different histone marks and non-CG methylation in the CAC context. Additionally, we find that ELA associates with methylomic changes that are as frequent in the CAC as in the canonical CG context, while these two forms of plasticity occur in sharply distinct genomic regions, features, and chromatin states. Combining these multiple data indicates that immune-related and small GTPase signaling pathways are most consistently impaired in the amygdala of ELA individuals. Overall, this work provides insights into genomic brain regulation as a function of early-life experience.We conducted a multicentre cross-sectional survey of COVID-19 patients to evaluate the acute psychological impact on the patients with coronavirus disease 2019 (COVID-19) during isolation treatment based on online questionnaires from 2 February to 5 March 2020. https://www.selleckchem.com/products/pt2385.html A total of 460 COVID-19 patients from 13 medical centers in Hubei province were investigated for their mental health status using online questionnaires (including Patient Health Questionnaire-9, Generalized Anxiety Disorder-7, Patient Health Questionnaire-15, and Insomnia Severity Index scales). Among all 460 COVID-19 patients, 187 (40.65%) of them were healthcare workers (HCWs). 297 (64.57%) of them were females. The most common psychological problems were somatization symptoms (66.09%, n = 304), followed by depression (53.48%, n = 246), anxiety (46.30%, n = 213), problems of insomnia (42.01%, n = 171), and then self-mutilating or suicidal thoughts (23.26%, n = 107). Of all the patients, 15.65% (n = 72) had severe somatization symptoms, and 2.83% (n = Patients at the age of 18-44 years old had fewer somatic symptoms than those aged over 45 years old (OR, 1.91, 95% CI, 1.3-2.81 [P = 0.001]). In conclusion, COVID-19 patients tended to have a high prevalence of adverse psychological events. Early identification and intervention should be conducted to avoid extreme events such as self-mutilating or suicidal impulsivity for COVID-19 patients, especially for those with low education levels and females who have undergone divorce or bereavement.Therapy resistance and metastatic processes in prostate cancer (PCa) remain undefined, due to lack of experimental models that mimic different disease stages. We describe an androgen-dependent PCa patient-derived xenograft (PDX) model from treatment-naïve, soft tissue metastasis (PNPCa). RNA and whole-exome sequencing of the PDX tissue and organoids confirmed transcriptomic and genomic similarity to primary tumor. PNPCa harbors BRCA2 and CHD1 somatic mutations, shows an SPOP/FOXA1-like transcriptomic signature and microsatellite instability, which occurs in 3% of advanced PCa and has never been modeled in vivo. Comparison of the treatment-naïve PNPCa with additional metastatic PDXs (BM18, LAPC9), in a medium-throughput organoid screen of FDA-approved compounds, revealed differential drug sensitivities. Multikinase inhibitors (ponatinib, sunitinib, sorafenib) were broadly effective on all PDX- and patient-derived organoids from advanced cases with acquired resistance to standard-of-care compounds. This proof-of-principle study may provide a preclinical tool to screen drug responses to standard-of-care and newly identified, repurposed compounds.