https://www.selleckchem.com/products/sgc-cbp30.html Finally, the proposed method was demonstrated to show resistance to sequence length-dependent performance deterioration.It is well-known that the major reason for the rapid proliferation of cancer cells are the hypomethylation of the whole cancer genome and the hypermethylation of the promoter of particular tumor suppressor genes. Locating 5-methylcytosine (5mC) sites in promoters is therefore a crucial step in further understanding of the relationship be-tween promoter methylation and the regulation of mRNA gene expression. High throughput identification of DNA 5mC in wet lab is still time-consuming and labor-extensive. Thus, finding the 5mC site of genome-wide DNA pro-moters is still an important task. We compared the effectiveness of the most popular and strong machine learning techniques namely XGBoost, Random Forest, Deep Forest, and Deep Feedforward Neural Network in predicting the 5mC sites of genome-wide DNA promoters. A feature extraction method based on k-mers embeddings learned from a language model were also applied. Overall, the performance of all the surveyed models surpassed deep learning models of the latest studies on the same dataset employing other encoding scheme. Furthermore, the best model achieved AUC scores of 0.962 on both cross-validation and independent test data. We concluded that our approach was efficient for identifying 5mC sites of promoters with high performance.Numerous microbes have been found to have vital impacts on human health through affecting biological processes. Therefore, exploring potential associations between microbes and diseases will promote the understanding and diagnosis of diseases. In this study, we present a novel computational model, named MSLINE, to infer potential microbe-disease associations by integrating Multiple Similarities and Large-scale Information Network Embedding (LINE) based on known associations. Specifically, on the basis of known microbe-diseas