https://www.selleckchem.com/products/ferrostatin-1.html The method was compared with a United States Environmental Protection Agency general method with C18 cartridges.In this fundamental study, streptomycin was extracted successfully from urine and plasma using electromembrane extraction (EME). Streptomycin is an aminoglycoside with log P -7.6 and was selected as an extremely polar model analyte. EME is a microextraction technique, where charged analytes are extracted under the influence of an electrical field, from sample, through a supported liquid membrane (SLM), and into an acceptor solution. The SLM comprised 2-nitrophenyl pentyl ether (NPPE) mixed with bis(2-ethylhexyl) phosphate (DEHP). DEHP served as ionic carrier and facilitated transfer of streptomycin across the SLM. For EME from urine and protein precipitated plasma, the optimal DEHP content in the SLM was 45-50% w/w. From untreated plasma, the content of DEHP was increased to 75% w/w in order to suppress interference from plasma proteins. Most endogenous substances with UV absorbance were not extracted into the acceptor. Proteins and phospholipids were also discriminated, with 0.9929), absence of significant matrix effects (94-112%), accuracy of 94-125%, and RSD ≤ 15% except at LLOQ. The average current during extractions was 67 µA or less. The findings of this paper demonstrated that EME is feasible for extraction of basic analytes of extreme polarity.The first CE methodology enabling the enantiomeric separation of panthenol was developed in this work. Electrokinetic chromatography with cyclodextrins (CD-EKC) was the CE mode employed for this purpose. The effect of different experimental variables such as the nature and concentration of the cyclodextrin, the temperature and the separation voltage was investigated. The best enantiomeric separation was obtained with 25 mM (2-carboxyethyl)-β-CD (CE-β-CD) in 100 mM borate buffer (pH 9.0), with a separation voltage of 30 kV and a temperature of 30 °C. Unde