https://www.selleckchem.com/products/fezolinetant.html However, addition of PEO increased the water absorption capacity and reduced the hardness and cohesion of the resulting aerogels. Due to the high water absorption potential, the aerogel produced in this study can serve as an absorbent matrix in food packaging. Mucosal administration of vaccine can produce a strong immune response. Antigens adhere to "M-cells", present at the intestinal mucosa and the M-cells produce immunity after actively transporting luminal antigens to the underlying immune cells. The objective of the present study was to prepare and characterize alginate coated chitosan nanoparticles (ACNPs) loaded with HBsAg as an antigen to produce immunity; additionally anchored with lipopolysaccharide (LPS) as an adjuvant. Ionic gelation method was used to prepare chitosan nanoparticles (CNPs) which were loaded with HBsAg and stabilized by alginate coating to protect from gastric environment. Results showed that the prepared LPS-HB-ACNPs were small and spherical with mean particle size 605.23 nm, polydispersity index 0.234 and Zeta potential -26.2 mV and could effectively protect antigen at GIT in acidic medium. HB-ANCPs were stable during storage at 4 ± 1 and 27 ± 2 °C. Anchoring with LPS showed increased immunity as compared to other formulations. Additionally, NPs elicited significant sIgA at mucosal secretions and IgG antibodies in systemic circulation. Thus, the prepared LPS anchored alginate coated chitosan NPs may be a promising approach as a vaccine delivery system for oral mucosal immunization. V.To improve the yield and stability of VII-type cornstarch-lauric acid complexes and inhibit the digestibility of starch, debranched cornstarch was used to complex with lauric acid under a low complexation temperature and a high complexation temperature (DSL30 and DSL90). Debranching treatment raised the yield of the complexes and the melting enthalpy, which reached 51.4% and 14.26 J/g for the complex DS