https://www.selleckchem.com/products/e1210.html Microalgae started receiving attention as producers of third generation of biofuel, but they are rich in many bioactive compounds. Indeed, they produce many molecules endowed with benefic effects on human health which are highly requested in the market. Thus, it would be important to fractionate algal biomass into its several high-value compounds this represents the basis of the microalgal biorefinery approach. Usually, conventional extraction methods have been used to extract a single class of molecules, with many side effects on the environment and on human health. The development of a green downstream platform could help in obtaining different class of molecules with high purity along with low environmental impact. This review is focused on technical advances that have been performed, from classic methods to the newest and green ones. Indeed, it is fundamental to set up new procedures that do not affect the biological activity of the extracted molecules. A comparative analysis has been performed among the conventional methods and the new extraction techniques, i.e., switchable solvents and microwave-assisted and compressed fluid extractions.Lactic acid (LA) is chemically synthesized or fermentatively produced using glucose as substrate, mainly using lactic acid bacteria. Polylactic acid is used as a biodegradable bioplastic for packaging materials, medical materials, and filaments for 3D printers. In this study, we aimed to construct a LA-tolerant yeast to reduce the neutralization cost in LA production. The pHLA2-51 strain was obtained through a previously developed genome evolution strategy, and transcriptome analysis revealed the gene expression profile of the mutant yeast. Furthermore, the expression of the genes associated with glycolysis and the LA synthesis pathway in the LA-tolerant yeast was comprehensively and randomly modified to construct a D-LA-producing, LA-tolerant yeast. In detail, DNA fragments expr