1E-07; age-at-onset top variant p value=9.3E-07). A polygenic risk score derived from publicly available Parkinson's disease summary statistics was a significant predictor of penetrance, but not of age-at-onset. This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;9082-94. This study suggests that variants within or near CORO1C may modify the penetrance of LRRK2 mutations. In addition, common Parkinson's disease associated variants collectively increase the penetrance of LRRK2 mutations. ANN NEUROL 2021;9082-94.The functions of long RNAs, including mRNAs and long noncoding RNAs (lncRNAs), critically depend on their subcellular localization. https://www.selleckchem.com/products/jsh-150.html The identity of the sequences that dictate subcellular localization and their high-resolution anatomy remain largely unknown. We used a suite of massively parallel RNA assays and libraries containing thousands of sequence variants to pinpoint the functional features within the SIRLOIN element, which dictates nuclear enrichment through hnRNPK recruitment. In addition, we profiled the endogenous SIRLOIN RNA-nucleoprotein complex and identified the nuclear RNA-binding proteins SLTM and SNRNP70 as novel SIRLOIN binders. Taken together, using massively parallel assays, we identified the features that dictate binding of hnRNPK, SLTM, and SNRNP70 to SIRLOIN and found that these factors are jointly required for SIRLOIN activity. Our study thus provides a roadmap for high-throughput dissection of functional sequence elements in long RNAs.Asymptomatic transmission complicates any public health strategies to combat a pandemic, which proved especially accurate in the case of COVID-19. Although asymptomatic cases are not unique to COVID-19, the high asymptomatic case rate raised many problems for developing effective public health interventions. The current modeling effort explored how asymptomatic transmission might impact pandemic responses in four key areas isolation procedures, changes in reproduction rate, the potential for reduced transmission from asymptomatic cases, and social adherence to public health measures. A high rate of asymptomatic cases effectively requires large-scale public health suppression and mitigation procedures given that quarantine procedures alone could not prevent an outbreak for a virus such as SARS-CoV-2. This problem only becomes worse without lowering the effective reproduction rate, and even assuming the potential for reduced transmission, any virus with a high degree of asymptomatic transmission will likely produce a pandemic. Finally, there is a concern that asymptomatic individuals will also refuse to adhere to public health guidance. Analyses indicate that, given certain assumptions, even half of the population adhering to public health guidance could reduce the peak and flatten the curve by over 90%. Taken together, these analyses highlight the importance of taking asymptomatic cases into account when modeling viral spread and developing public health intervention strategies.Neocortex expansion during human evolution provides a basis for our enhanced cognitive abilities. Yet, which genes implicated in neocortex expansion are actually responsible for higher cognitive abilities is unknown. The expression of human-specific ARHGAP11B in embryonic/foetal mouse, ferret and marmoset neocortex was previously found to promote basal progenitor proliferation, upper-layer neuron generation and neocortex expansion during development, features commonly thought to contribute to increased cognitive abilities. However, a key question is whether this phenotype persists into adulthood and if so, whether cognitive abilities are indeed increased. Here, we generated a transgenic mouse line with physiological ARHGAP11B expression that exhibits increased neocortical size and upper-layer neuron numbers persisting into adulthood. Adult ARHGAP11B-transgenic mice showed altered neurobehaviour, notably increased memory flexibility and a reduced anxiety level. Our data are consistent with the notion that neocortex expansion by ARHGAP11B, a gene implicated in human evolution, underlies some of the altered neurobehavioural features observed in the transgenic mice, such as the increased memory flexibility, a neocortex-associated trait, with implications for the increase in cognitive abilities during human evolution.Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.An expression was earlier derived for the non-steady state isotopic composition of a leaf when the composition of the water entering the leaf was not necessarily the same as that of the water being transpired (Farquhar and Cernusak 2005). This was relevant to natural conditions because the associated time constant is typically sufficiently long to ensure that the leaf water composition and fluxes of the isotopologues are rarely steady. With the advent of laser-based measurements of isotopologues, leaves have been enclosed in cuvettes and time courses of fluxes recorded. The enclosure modifies the time constant by effectively increasing the resistance to the one-way gross flux out of the stomata because transpiration increases the vapour concentration within the chamber. The resistance is increased from stomatal and boundary layer in series, to stomata, boundary layer and chamber resistance, where the latter is given by the ratio of leaf area to the flow rate out of the chamber. An apparent change in concept from one-way to net flux, introduced by Song, Simonin, Loucos and Barbour (2015) is resolved, and shown to be unnecessary, but the value of their data is reinforced.