https://www.selleckchem.com/products/isoxazole-9-isx-9.html In the second experiment, knots maintained constant body mass despite being fed alternating high- and low-quality diets. In both experiments, regulation of body mass was achieved through a combination of changes in food intake and activity. Both experiments also provide some evidence for a role of metabolic adjustments. Taken together, these two experiments demonstrate that fine-scale management of body mass in knots is achieved through multiple mechanisms acting simultaneously.Visual lateralization is widespread for prey and anti-predation in numerous taxa. However, it is still unknown how the brain governs this asymmetry. In this study, we conducted behavioral and electrophysiological experiments to evaluate anti-predatory behaviors and dynamic brain activities in Emei music frogs (Nidirana daunchina), to explore the potential eye bias for anti-predation and the underlying neural mechanisms. To do this, predator stimuli (a model snake head and a leaf as a control) were moved around the subjects in clockwise and anti-clockwise directions at steady velocity. We counted the number of anti-predatory responses and measured electroencephalogram (EEG) power spectra for each band and brain area (telencephalon, diencephalon and mesencephalon). Our results showed that (1) no significant eye preferences could be found for the control (leaf); however, the laterality index was significantly lower than zero when the predator stimulus was moved anti-clockwise, suggesting that left-eye advantage exists in this species for anti-predation; (2) compared with no stimulus in the visual field, the power spectra of delta and alpha bands were significantly greater when the predator stimulus was moved into the left visual field anti-clockwise; and, (3) generally, the power spectra of each band in the right-hemisphere for the left visual field were higher than those in the left counterpart. These results support that the left eye