Hypoxia-inducible factors (HIFs) regulate oxygen sensing and expression of genes involved in angiogenesis and erythropoiesis. Polycythemia has been observed in patients with hepatocellular carcinoma (HCC), but the underlying molecular basis remains unknown. Liver tissues from 302 HCC patients, including 104 with polycythemia, were sequenced for HIF2A mutations. A germline HIF2A mutation was detected in one HCC patient with concurrent polycythemia. Three additional family members carried this mutation, but none exhibited polycythemia or were diagnosed with HCC. The gain-of-function mutation resulted in a HIF-2α protein that was transcribed normally but resistant to degradation. HIF-2α target genes EDN1, EPO, GNA14, and VEGF were significantly upregulated in the tumor bed but not in the surrounding liver tissue. Polycythemia resolved upon total resection of the tumor tissue. This newly described HIF2A mutation may promote HCC oncogenesis.Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC. However, the role of IHH in the aging of BMSC is still unclear. This study explored the role IHH in the senescence of BMSC obtained from human samples and senescent mice. Isolated BMSC were transfected with IHH siRNA or incubated with exogenous IHH protein and the mechanisms of aging and differentiation investigated. Moreover, the interactions between IHH, and mammalian target of rapamycin (mTOR) and reactive oxygen species (ROS) were evaluated using the corresponding inhibitors and antioxidants. BMSC transfected with IHH siRNA showed characteristics of senescence-associated features including increased senescence-associated β-galactosidase activity (SA-β-gal), induction of cell cycle inhibitors (p53/p16), development of senescence-associated secretory phenotype (SASP), activation of ROS and mTOR pathways as well as the promotion of skewed differentiation. Interestingly, BMSC treatment with IHH protein reversed the senescence markers and corrected biased differentiation. Moreover, IHH shortage-induced senescence signs were compromised after mTOR and ROS inhibition. Our findings presented anti-aging activity for IHH in BMSC through down-regulation of ROS/mTOR pathways. This discovery might contribute to increasing the therapeutic, immunomodulatory and regenerative potency of BMSC and introduce a novel remedy in the management of aging-related diseases.As an indispensable structure protein, the herpes simplex virus 1 (HSV-1) UL6 has been described to exert numerous roles in viral proliferation. However, its exact subcellular localization and subcellular transport mechanism is not well known. In the present study, by utilizing confocal fluorescent microscopy, UL6 was shown to mainly locate in the nucleus in enhanced yellow fluorescent protein or Flag tag fused expression plasmid-transfected cells or HSV-1-infected cells, whereas its predicted nuclear localization signal was nonfunctional. In addition, by exploiting dominant negative mutant and inhibitor of different nuclear import receptors, as well as co-immunoprecipitation and RNA interference assays, UL6 was established to interact with importin α1, importin α7 and transportin-1 to mediate its nuclear translocation under the help of Ran-mediated GTP hydrolysis. Accordingly, these results will advance the knowledge of UL6-mediated biological significances in HSV-1 infection cycle.BACKGROUND Colorectal cancer (CRC) accounts for the highest fatality rate among all malignant tumors. Immunotherapy has shown great promise in management of many malignant tumors, necessitating the need to explore its role in CRC. RESULTS Our analysis revealed a total of 71 differentially expressed IRGs, that were associated with prognosis of CRC patients. https://www.selleckchem.com/products/caspofungin-acetate.html Ten IRGs (FABP4, IGKV1-33, IGKV2D-40, IGLV6-57, NGF, RETNLB, UCN, VIP, NGFR, and OXTR) showed high prognostic performance in predicting CRC outcomes, and were further associated with tumor burden, metastasis, tumor TNM stage, gender, age, and pathological stage. Interestingly, the IRG-based prognostic index (IRGPI) reflected infiltration of multiple immune cell types. CONCLUSIONS This model provides an effective approach for stratification and characterization of patients using IRG-based immunolabeling tools to monitor prognosis of CRC. METHODS We performed a comprehensive analysis of expression profiles for immune-related genes (IRGs) and overall survival time in 437 CRC patients from the TCGA database. We employed computational algorithms and Cox regression analysis to estimate the relationship between differentially expressed IRGs and survival rates in CRC patients. Furthermore, we investigated the mechanisms of action of the IRGs involved in CRC, and established a novel prognostic index based on multivariate Cox models.Recently, Mahalanobis distance (DM) was suggested as a statistical measure of physiological dysregulation in aging individuals. We constructed DM variants using sets of biomarkers collected at the two visits of the Long Life Family Study (LLFS) and performed joint analyses of longitudinal observations of DM and follow-up mortality in LLFS using joint models. We found that DM is significantly associated with mortality (hazard ratio per standard deviation 1.31 [1.16, 1.48] to 2.22 [1.84, 2.67]) after controlling for age and other covariates. GWAS of random intercepts and slopes of DM estimated from joint models found a genome-wide significant SNP (rs12652543, p=7.2×10-9) in the TRIO gene associated with the slope of DM constructed from biomarkers declining in late life. Review of biological effects of genes corresponding to top SNPs from GWAS of DM slopes revealed that these genes are broadly involved in cancer prognosis and axon guidance/synapse function. Although axon growth is mainly observed during early development, the axon guidance genes can function in adults and contribute to maintenance of neural circuits and synaptic plasticity. Our results indicate that decline in axons' ability to maintain complex regulatory networks may potentially play an important role in the increase in physiological dysregulation during aging.