rtant pre-requisites for the tool and features to avoid and novel ideas for the proposed tool. Overall participants supported the development of the proposed risk assessment and communication tool, but identified the important role that doctor-patient relationships would play to ensure successful implementation. The use of Māori and Pacific languages in the proposed tool may enhance engagement and understanding. Patients and general practitioners provided different perspectives when prospectively evaluating the proposed risk assessment and communication tool. This co-design research identified important pre-requisites for the tool and features to avoid and novel ideas for the proposed tool. Overall participants supported the development of the proposed risk assessment and communication tool, but identified the important role that doctor-patient relationships would play to ensure successful implementation. The use of Māori and Pacific languages in the proposed tool may enhance engagement and understanding. Baker's yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity. Here, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one-third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate. Our study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes. Our study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes. Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli (e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing. The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance to tetracycline being t control strategies. Breast cancer in young adults has been implicated with a worse outcome. Analyses of genomic traits associated with age have been heterogenous, likely because of an incomplete accounting for underlying molecular subtypes. We aimed to resolve whether triple-negative breast cancer (TNBC) in younger versus older patients represent similar or different molecular diseases in the context of genetic and transcriptional subtypes and immune cell infiltration. In total, 237 patients from a reported population-based south Swedish TNBC cohort profiled by RNA sequencing and whole-genome sequencing (WGS) were included. Patients were binned in 10-year intervals. Complimentary PD-L1 and CD20 immunohistochemistry and estimation of tumor-infiltrating lymphocytes (TILs) were performed. Cases were analyzed for differences in patient outcome, genomic, transcriptional, and immune landscape features versus age at diagnosis. Additionally, 560 public WGS breast cancer profiles were used for validation. Median age at diagnosis wa Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC. Consequently, treatment decisions should be less influenced by age and more driven by tumor biology. Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC. Consequently, treatment decisions should be less influenced by age and more driven by tumor biology. Foraging tasks have recently been increasingly used to investigate visual attention. Visual attention can be biased when certain stimuli capture our attention, especially threatening or anxiety-provoking stimuli, but such effects have not been addressed in foraging studies. We measured potential attentional bias associated with eating disorder symptoms to food related stimuli with our previously developed iPad foraging task. Forty-four participants performed a foraging task where they were instructed to tap predesignated food related targets (healthy and unhealthy) and other non-food objects and completed four self-report questionnaires measuring symptoms of eating disorders. https://www.selleckchem.com/ Participants were split into two groups based on their questionnaire scores, a symptom group and no symptom group. The foraging results suggest that there are differences between the groups on switch costs and target selection times (intertarget times) but they were only statistically significant when extreme-group analyses (EGA) were used.