https://www.selleckchem.com/products/irak4-in-4.html The high concentrations of precursor vapours within an air mass lead to persistent nucleation with photochemical age ranging from 12 to 48 h in winter. Coincidently, the fast increase of PM2.5 mass was also observed during this range of photochemical age. Noteworthy, CS increased with the photochemical age on NPF days only, which is the likely reason for the observation that the PM2.5 mass increased faster with photochemical age on NPF days compared with other days. The evolution of particles with the photochemical age provides new insights into understanding how particles originating from NPF transform to haze pollution.This study was designed to prepare an adsorbent without any complex modification process for the removal of atrazine (AZN) from aqueous phase. Thus, Mobil composition of matter No. 41 (MCM-41) was synthesized and modified by physical activation at high temperature (650 °C). The synthesized adsorbent was tested by XRD, SEM, EDX, FT-IR and BET to confirm the successful synthesis as well as effectiveness for the adsorption of AZN. The average particle size of prepared material was found to be about 500 nm, while the BET calculations showed that adsorbent was porous with a specific surface area of 25.9 m2/g. Later, it was used in batch removal studies of AZN for which, it showed a high adsorption capacity of 89.99 (mg/g). The pH of 6, temperature of 313 K was found to be the optimized conditions for the maximum removal of AZN. Of the four kinetic models studied, the pseudo-first-order yielded a superior fit in comparison with the other three models. The results indicated that the five linearized adsorption equilibrium isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Harkins-Jura models) closely correlate the AZN adsorption removal process with Pearson correlation coefficient (R2) values of 0.9955, 0.8551, 0.8736, 0.8913 and 0.7253, respectively. The energy functions obtained by