Tumor hypoxia and the tissue penetration limitation of excitation light hamper the widespread clinical use of photodynamic therapy. The development of new therapeutic strategies that can generate oxygen-independent free radicals without penetration depth limitation is of great demand. Herein, a novel magnetothermodynamic strategy for deep-seated tumor therapy is reported. In this system, a radical initiator (AIPH) was loaded into porous hollow iron oxide nanoparticles (PHIONs). Under the induction of an alternating magnetic field (AMF), PHIONs can generate heat to trigger the release and decomposition of AIPH, resulting in the generation of oxygen-independent alkyl radicals. The resulting alkyl radicals can effectively kill cancer cells under hypoxic conditions. More importantly, this magnetothermally triggered free-radical generator exhibits significant therapeutic efficacy for orthotopic liver tumors in a rat model. This magnetothermodynamic therapy strategy with the advantages of oxygen independence and no limitation of penetration depth holds great promise in deep-seated solid tumor treatment.The introduction of thiophene rings to the helical structure of carbohelicenes has electronic effects that may be used advantageously in organic electronics. The performance of these devices is highly dependent on the sulfur atom topology, so a precise knowledge of the synthetic routes that may afford isomeric structures is necessary. We have studied the photocyclization pathway of both 2- and 3-styrylthiophenes on their way to thiahelicenes by experiment and theory. To begin with, the synthesis of stereochemically well-defined 2- and 3-styrylthiophenes allowed us to register first, and simulate later, the UV-vis electronic spectra of these precursors. This information gave us access through time-dependent density functional theory calculations to the very nature of the excited states involved in the photocyclization step and from there to the regio- and stereochemical outcome of the reaction. For the widely known case of a 2-styrylthiophene derivative, the expected naphtho[2,1-b]thiophene type of ring fusion was predicted and experimentally observed by synthesis. On the contrary, 3-styrylthiophene derivatives have been seldom used in synthetic photocyclizations. https://www.selleckchem.com/products/bgb-290.html Among the two possible structural outcomes, only the naphtho[1,2-b]thiophene type of ring fusion was found to be mechanistically sound, and this was actually the only compound observed by synthesis.Several investigations have suggested that ultrasound triggers the release of drugs encapsulated into liposomes at acoustic pressures low enough to avoid cavitation or high hyperthermia. However, the mechanism leading to this triggered release as well as the adequate composition of the liposome membrane remains unknown. Here, we investigate the ultrasound-triggered release of fluorescein disodium salt encapsulated into liposomes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-distearoylphosphatidyl-ethanolamine (DSPC) lipids with various concentrations of cholesterol (from 0 to 44 mol %). The passive release of encapsulated fluorescein was first characterized. It was observed to be higher when the membrane is in a fluid phase and increased with temperature but decreased upon addition of cholesterol. Next, the release of fluorescein was measured at different acoustic frequencies (0.8, 1.1, and 3.3 MHz) and peak-to-peak pressures (0, 2, 2.5, 5, and 8 MPa). Measurements were performed at temperatu lipids.We examine the theoretical underpinnings of the seminal discoveries by Reiner Sustmann about the ambiphilic nature of Huisgen's phenyl azide cycloadditions. Density functional calculations with ωB97X-D and B2PLYP-D3 reproduce the experimental data and provide insights into ambiphilic control of reactivity. Distortion/interaction-activation strain and energy decomposition analyses show why Sustmann's use of dipolarophile ionization potential is such a powerful predictor of reactivity. We add to Sustmann's data set several modern distortion-accelerated dipolarophiles used in bioorthogonal chemistry to show how these fit into the orbital energy criteria that are often used to understand cycloaddition reactivity. We show why such a simple indicator of reactivity is a powerful predictor of reaction rates that are actually controlled by a combination of distortion energies, charge transfer, closed-shell repulsion, polarization, and electrostatic effects.ZnZrO ternary oxide represents a prominent catalytic system, identified recently for syngas conversion and CO2 reduction via OX-ZEO technology. One intriguing observation of the ZnZrO catalyst is the very low amount of Zn required for achieving high activity, which challenges the current views on the active site of binary oxide catalysts. Herein, we demonstrate, via machine-learning-based atomic simulation, that the structure evolution of the ZnZrO system in synthesis can be traced from bulk to surface, which leads to the identification of the active site of the ZnZrO catalyst. Theory shows that an unprecedented single-layer Zn-O structure can adhere strongly to the monoclinic ZrO2 minority (001) surface, forming a stable oxide-on-oxide interface Zn-O/M(001). The single-layer Zn-O can convert syngas to methanol with a high turnover frequency (7.38 s-1) from microkinetics simulation. Electron structure analyses reveal that the pentahedron [ZnO4] in Zn-O/M(001) enhances the surface electron donation to promote the catalytic activity.Milk is a complex biological fluid composed mainly of water, carbohydrates, lipids, proteins, and diverse bioactive factors. Human milk represents a unique tailored source of nutrients that adapts during lactation to the specific needs of the developing infant. Proteins in milk have been studied for decades, and proteomics, peptidomics, and glycoproteomics are the main approaches previously deployed to decipher the proteome of human milk. In the present work, we aimed at implementing a highly automated pipeline for the proteomic analysis of human milk with liquid chromatography mass spectrometry (MS). Commercial human milk samples were used to evaluate and optimize workflows. Centrifugation for defatting milk samples was assessed before and after reduction, alkylation, and enzymatic digestion of proteins, without and with presence of surfactants. Skimmed milk samples were analyzed using isobaric labeling-based quantitative MS on an Orbitrap Tribrid mass spectrometer. Sample fractionation using isoelectric focusing was also evaluated to more deeply profile the human milk proteome.