Lone-pair electrons (LPEs) ns2 in subvalent 14 and 15 groups lead to highly anharmonic lattice and strong distortion polarization, which are responsible for the groups' outstanding thermoelectric and optoelectronic properties. However, their dynamic stereochemical role in structural and physical properties is still unclear. Here, by introducing pressure to tune the behavior of LPEs, we systematically investigate the lone-pair stereochemical role in a Bi2O2S. The gradually suppressed LPEs during compression show a nonlinear repulsive electrostatic force, resulting in two anisotropic structural transitions. An orthorhombic-to-tetragonal phase transition happens at 6.4 GPa, caused by the dynamic cation centering. This structural transformation effectively modulates the optoelectronic properties. Further compression beyond 13.2 GPa induces a 2D-to-3D structural transition due to the disappearance of the Bi-6s2 LPEs. Therefore, the pressure-induced LPE reconfiguration dominates these anomalous variations of lattice, electronic, and optical properties. Our findings provide new insights into the materials optimization by regulating the characters of LPEs.Currently, two different methods dominate the field of biomolecular free-energy calculations for the prediction of binding affinities. Pathway methods are frequently used for large ligands that bind on the surface of a host, such as protein-protein complexes. Alchemical methods, on the other hand, are preferably applied for small ligands that bind to deeply buried binding sites. https://www.selleckchem.com/products/AZD2281(Olaparib).html The latter methods are also widely known to be heavily artifacted by the representation of electrostatic energies in periodic simulation boxes, in particular, when net-charge changes are involved. Different methods have been described to deal with these artifacts, including postsimulation correction schemes and instantaneous correction schemes (e.g., co-alchemical perturbation of ions). Here, we use very simple test systems to show that instantaneous correction schemes with no change in the system net charge lower the artifacts but do not eliminate them. Furthermore, we show that free energies from pathway methods suffer from the same artifacts.Because of their anisotropic electron distribution and electron deficiency, halonium ions are unusually strong halogen-bond donors that form strong and directional three-center, four-electron halogen bonds. These halogen bonds have received considerable attention owing to their applicability in supramolecular and synthetic chemistry and have been intensely studied using spectroscopic and crystallographic techniques over the past decade. Their computational treatment faces different challenges to those of conventional weak and neutral halogen bonds. Literature studies have used a variety of wave functions and DFT functionals for prediction of their geometries and NMR chemical shifts, however, without any systematic evaluation of the accuracy of these methods being available. In order to provide guidance for future studies, we present the assessment of the accuracy of 12 common DFT functionals along with the Hartree-Fock (HF) and the second-order Møller-Plesset perturbation theory (MP2) methods, selected from an initial set of 36 prescreened functionals, for the prediction of 1H, 13C, and 15N NMR chemical shifts of [N-X-N]+ halogen-bond complexes, where X = F, Cl, Br, and I. Using a benchmark set of 14 complexes, providing 170 high-quality experimental chemical shifts, we show that the choice of the DFT functional is more important than that of the basis set. The M06 functional in combination with the aug-cc-pVTZ basis set is demonstrated to provide the overall most accurate NMR chemical shifts, whereas LC-ωPBE, ωB97X-D, LC-TPSS, CAM-B3LYP, and B3LYP to show acceptable performance. Our results are expected to provide a guideline to facilitate future developments and applications of the [N-X-N]+ halogen bond.Electrocatalysts with single metal atoms as active sites have received increasing attention owing to their high atomic utilization efficiency and exotic catalytic activity and selectivity. This review aims to provide a comprehensive summary on the recent development of such single-atom electrocatalysts (SAECs) for various energy-conversion reactions. The discussion starts with an introduction of the different types of SAECs, followed by an overview of the synthetic methodologies to control the atomic dispersion of metal sites and atomically resolved characterization using state-of-the-art microscopic and spectroscopic techniques. In recognition of the extensive applications of SAECs, the electrocatalytic studies are dissected in terms of various important electrochemical reactions, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Examples of SAECs are deliberated in each case in terms of their catalytic performance, structure-property relationships, and catalytic enhancement mechanisms. A perspective is provided at the end of each section about remaining challenges and opportunities for the development of SAECs for the targeted reaction.Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kβ X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kβ XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kβ XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kβ2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kβ2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing.