4-67.4-fold among different loci. However, the inactivation of UDG is detrimental to the genome stability and future application of engineered strains. Therefore, we finally developed antisense RNA interference-enhanced CRISPR/Cas9 Base Editing method (asRNA-BE) to transiently disrupt the expression of uracil DNA glycosidases during base editing, leading to a 2.8-65.8-fold enhanced editing efficiency and better genome stability. Our results demonstrate that asRNA-BE is a much better editing tool for base editing in S. lividans 66 and might be beneficial for improving the base editing efficiency and genome stability in other Streptomyces strains.We present the first digital microfluidic (DMF) antimicrobial susceptibility test (AST) using an optical oxygen sensor film for in-situ and real-time continuous measurement of extracellular dissolved oxygen (DO). The device allows one to monitor bacterial growth across the entire cell culture area, and the fabricated device was utilized for a miniaturized and automated AST. The oxygen-sensitive probe platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin was embedded in a Hyflon AD 60 polymer and spin-coated as a 100 nm thick layer onto an ITO glass serving as the DMF ground electrode. This DMF-integrated oxygen sensing film was found to cause no negative effects to the droplet manipulation or cell growth on the chip. The developed DMF platform was used to monitor the DO consumption during Escherichia coli (E. coli) growth caused by cellular respiration. A rapid and reliable twofold dilution procedure was developed and performed, and the AST with E. coli ATCC 25922 in the presence of ampicillin, chloramphenicol, and tetracycline at different concentrations from 0.5 to 8 μg mL-1 was investigated. All sample dispensation, dilution, and mixing were performed automatically on the chip within 10 min. The minimum inhibitory concentration values measured from the DMF chip were consistent with those from the standard broth microdilution method but requiring only minimal sample handling and working with much smaller sample volumes.Integration of high-sensitivity sensors with multiple sensing performance for the environmental detection of permittivity (εr), conductivity (σ), and the refractive index (n) is required to support Societies 5.0. However, there are still many sensors with low sensitivity that stand alone. A shear-horizontal surface acoustic wave (SH-SAW) sensor is usually used because of its high-sensitivity performance in detecting electrical properties. Moreover, localized surface plasmon resonance (LSPR) sensors show remarkable optical side capability. Here, we have successfully combined these advantages with an additional benefit of sensitivity enhancement. We propose a hybrid acoustoplasmonic sensor generated by integrating SH-SAW and LSPR devices to simultaneously detect εr, σ, and n. The SH-SAW sensor was fabricated on a 36XY-LiTaO3 substrate using a developed interdigital transducer. Then, the LSPR sensor was implemented by the deposition of gold nanoparticles (AuNPs) on the propagation surfaces of the SH-SAW sensor. generates a small blueshift in the LSPR effect. https://www.selleckchem.com/products/Metformin-hydrochloride(Glucophage).html However, insignificant variation was noted in independent performances. In general, the SH-SAW sensor with AuNPs shows multifunctional independent characteristics and high-sensitivity performance, making it suitable for a chemical environment, with the possibility of integration with a wireless network.Autonomic self-healing (SH), namely, the ability to repair damages from mechanical stress spontaneously, is polarizing attention in the field of new-generation electrochemical devices. This property is highly attractive to enhance the durability of rechargeable Li-ion batteries (LIBs) or Na-ion batteries (SIBs), where high-performing anode active materials (silicon, phosphorus, etc.) are strongly affected by volume expansion and phase changes upon ion insertion. Here, we applied a SH strategy, based on the dynamic quadruple hydrogen bonding, to nanosized black phosphorus (BP) anodes for Na-ion cells. The goal is to overcome drastic capacity decay and short lifetime, resulting from mechanical damages induced by the volumetric expansion/contraction upon sodiation/desodiation. Specifically, we developed novel ureidopyrimidinone (UPy)-telechelic systems and related blends with poly(ethylene oxide) as novel and green binders alternative to the more conventional ones, such as polyacrylic acid and carboxymethylcellulose, which are typically used in SIBs. BP anodes show impressively improved (more than 6 times) capacity retention when employing the new SH polymeric blend. In particular, the SH electrode still works at a current density higher than 3.5 A g-1, whereas the standard BP electrode exhibits very poor performances already at current densities lower than 0.5 A g-1. This is the result of better adhesion, buffering properties, and spontaneous damage reparation.The optimal therapy effect of tumors is frequently restricted by the dense extracellular matrix (ECM) and anoxia. Herein, an intelligent BPNs-Arg-GOx@MnO2 (BAGM) nanozyme is innovatively designed as a multimodal synergistic therapeutic paradigm that possesses both nitric oxide (NO) self-supplying and ECM degradation properties to reinforce the therapy effect by a tumor microenvironment (TME)-activatable cyclic cascade catalytic reaction. This theranostic nanoplatform is constructed by using polyethyleneimine-modified black phosphorus nanosheets as a "fishnet" to attach l-Arginine (l-Arg) and glucose oxidase (GOx) and then depositing mini-sized MnO2 nanosheets (MNs) on the surface by a facile situ biomineralization method. As an intelligent "switch", the MNs can effectively trigger the cascade reaction by disintegrating intracellular H2O2 to release O2. Then, the conjugated GOx can utilize O2 production to catalyze intracellular glucose to generate H2O2, which not only starves the tumor cells but also promotes oxidation of l-Arg to NO. Thereafter, matrix metalloproteinases will be activated by NO production to degrade the dense ECM and transform matrix collagen into a loose state. In turn, a loose ECM can enhance the accumulation of the BAGM nanozyme and thereby reinforce synergistic photothermal therapy/starvation therapy/NO gas therapy. Both in vitro and in vivo results indicate that the TME-tunable BAGM therapeutic nanoplatform with cascade anticancer property and satisfactory biosecurity shows potential in nanomedicine.