High quality factor mechanical resonators have shown great promise in the development of classical and quantum technologies. Simultaneously, progress has been made in developing controlled mechanical nonlinearity. Here, we combine these two directions of progress in a single platform consisting of coupled silicon nitride (SiNx) and graphene mechanical resonators. We show that nonlinear response can be induced on a large area SiNx resonator mode and can be efficiently controlled by coupling it to a gate-tunable, freely suspended graphene mode. The induced nonlinear response of the hybrid modes, as measured on the SiNx resonator surface is giant, with one of the highest measured Duffing constants. We observe a novel phononic frequency comb which we use as an alternate validation of the measured values, along with numerical simulations which are in overall agreement with the measurements.We used relaxation-assisted two-dimensional infrared spectroscopy to study the temperature dependence (10-295 K) of end-to-end energy transport across end-decorated PEG oligomers of various chain lengths. The excess energy was introduced by exciting the azido end-group stretching mode at 2100 cm-1 (tag); the transport was recorded by observing the asymmetric C═O stretching mode of the succinimide ester end group at 1740 cm-1. The overall transport involves diffusive steps at the end groups and a ballistic step through the PEG chain. We found that at lower temperatures the through-chain energy transport became faster, while the end-group diffusive transport time and the tag lifetime increase. The modeling of the transport using a quantum Liouville equation linked the observations to the reduction of decoherence rate and an increase of the mean-free-path for the vibrational wavepacket. The energy transport at the end groups slowed down at low temperatures due to the decreased number and efficiency of the anharmonic energy redistribution pathways.Understanding the adhesion process between a rigid material (filler) and a viscoelastic material is important for designing an enhanced industrial material. However, the adhesion process is not simple because the properties of the adhesive, adherend, and interface are intricately influenced by this process. Here we investigate the adhesion of microspheres onto rubber films to clarify the dominant factor in the adhesion process. A rubber meniscus first forms on the sphere surface, followed by sedimentation of the sphere into the rubber film. https://www.selleckchem.com/products/rin1.html This sedimentation is even observed when the surface free energy of the sphere is lower than that of the rubber film, which indicates that the driving force of meniscus formation obeys Young's equation on a tangential line of the sphere. The dominant factor of the sedimentation behavior is investigated by using atomic force microscopy force-sample deformation curve measurements and creep tests on the rubber films. These experimental results demonstrate that the adhesion process is strongly dominated by the viscoelastic property of the bulk rubber as opposed to the sphere and interface properties.Despite a comprehensive study on the biosynthesis and function of nitric oxide, biological metabolism of nitric oxide, especially when its concentration exceeds the cytotoxic level, remains elusive. Oxidation of nitric oxide by O2 in aqueous solution has been known to yield NO2-. On the other hand, a biomimetic study on the metal-mediated conversion of NO to NO2-/NO3- via O2 reactivity disclosed a conceivable pathway for aerobic metabolism of NO. During the NO-to-NO3- conversion, transient formation of metal-bound peroxynitrite and subsequent release of •NO2 via O-O bond cleavage were evidenced by nitration of tyrosine residue or 2,4-di-tert-butylphenol (DTBP). However, the synthetic/catalytic/enzymatic cycle for conversion of nitric oxide into a nitrite pool is not reported. In this study, sequential reaction of the ferrous complex [(PMDTA)Fe(κ2-O,O'-NO2)(κ1-O-NO2)] (3; PMDTA = pentamethyldiethylenetriamine) with NO(g), KC8, and O2 established a synthetic cycle, complex 3 → Fe(NO)29 DNIC [(PMDTA)Fe(NO)2][NO2] (4) → Fe(NO)210 DNIC [(PMDTA)Fe(NO)2] (1) → [(PMDTA)(NO)Fe(κ2-O,N-ONOO)] (2) → complex 3, for the transformation of nitric oxide into nitrite. In contrast to the reported reactivity of metal-bound peroxynitrite toward nitration of DTBP, peroxynitrite-bound MNIC 2 lacks phenol nitration reactivity toward DTBP. Presumably, the [(PMDTA)Fe] core in Fe(NO)8 MNIC 2 provides a mononuclear template for intramolecular interaction between Fe-bound peroxynitrite and Fe-bound NO-, yielding Fe-bound nitrite stabilized in the form of complex 3. This [(PMDTA)Fe]-core-mediated concerted peroxynitrite homolytic O-O bond cleavage and combination of the O atom with Fe-bound NO- reveals a novel and effective pathway for NO-to-NO2- transformation. Regarding the reported assembly of the dinitrosyliron unit (DNIU) [Fe(NO)2] in the biological system, this synthetic cycle highlights DNIU as a potential intermediate for nitric oxide monooxygenation activity in a nonheme iron system.Exploring reliable electrolytes for aluminum ion batteries requires an in-depth understanding of the behavior of aluminum ions in ethereal-organic solvents. Electrolytes comprised of aluminum trifluoromethanesulfonate (Al-triflate) in tetrahydrofuran (THF) were investigated computationally and experimentally. Optimized geometries, redox potentials, and vibrational frequencies of species likely to be present in the electrolyte were calculated by density functional theory and then measured spectroscopically and electrochemically. Aluminum appears to be electrochemically active in THF with a reduction onset near 0 V versus Al/Al3+. Spectroscopic measurements reveal explicit evidence for the presence of two concentration-dependent ionic environments for the triflate anions, namely, outer-shell ligands and Al-bound triflates. Additionally, ionic conductivities of ∼2.5 mS/cm were measured for these electrolytes ∼0.8M.We study the behavior of the line of the unit compressibility factor (Zeno-line) in crystalline states. We used the Lennard-Jones system, experimental P-V-T data for a number of substances, and the Debye model. We found that, contrary to the case of the liquid states, the Zeno-line in a crystal is not a straight line at the density-temperature plane. However, the corresponding pressure-temperature dependence appears to be quasi-linear. As a result, this line in the solid state can be defined by the only one point where the Zeno-line crosses the melting curve.