https://www.selleckchem.com/products/retatrutide.html Therefore, a fluorescent aptasensor based on G-quadruplex-assisted structural transformation was developed through the Thioflavin T mediator. The aptasensor exhibited a broad detection window from 0.25 to 1000 nM LCN 1, with a limit of detection of 0.2 nM. Furthermore, the aptasensor was applied to LCN 1 detection in artificial tear samples and displayed good reproducibility and stability. These results show that the developed aptasensor has significant potential for sensitive, specific and convenient detection of the DR-specific biomarker LCN 1.Drug abuse is a global problem, requiring an interdisciplinary approach. Discovery, production, trafficking, and consumption of illicit drugs have been constantly growing, leading to heavy consequences for environment, human health, and society in general. Therefore, an urgent need for rapid, sensitive, portable and easy-to-operate detection methods for numerous drugs of interest in diverse matrices, from police samples, biological fluids and hair to sewage water has risen. Electrochemical sensors are promising alternatives to chromatography and spectrometry. Last decades, electrochemical sensing of illegal drugs has experienced a very significant growth, driven by improved transducers and signal amplifiers helping to improve the sensitivity and selectivity. The present review summarizes recent advances (last 10 years) in electrochemical detection of the most prevailing illicit drugs (such as cocaine, heroin, and (meth)amphetamine), their precursors and derivatives in different matrices. Various electrochemical sensors making use of different transducers with their (dis)advantages were discussed, and their sensitivity and applicability were critically compared. In those cases where natural or synthetic recognition elements were included in the sensing system to increase specificity, selected recognition elements, their immobilization, working conditions, and analytical pe