https://www.selleckchem.com/EGFR(HER).html This chapter describes two computational methods for PDZ-peptide binding high-throughput computational protein design (CPD) and a medium-throughput approach combining molecular dynamics for conformational sampling with a Poisson-Boltzmann (PB) Linear Interaction Energy for scoring. A new CPD method is outlined, which uses adaptive Monte Carlo simulations to efficiently sample peptide variants that tightly bind a PDZ domain, and provides at the same time precise estimates of their relative binding free energies. A detailed protocol is described based on the Proteus CPD software. The medium-throughput approach can be performed with standard MD and PB software, such as NAMD and Charmm. For 40 complexes between Tiam1 and peptide ligands, it gave high a2ccuracy, with mean errors of around 0.5 kcal/mol for relative binding free energies and no large errors. It requires a moderate amount of parameter fitting before it can be applied, and its transferability to other protein families is still untested.Viruses have evolved to interact with their hosts. Some viruses such as human papilloma virus, dengue virus, SARS-CoV, or influenza virus encode proteins including a PBM that interact with cellular proteins containing PDZ domains. There are more than 400 cellular protein isoforms with these domains in the human genome, indicating that viral PBMs have a high potential to influence the behavior of the cell. In this review we analyze the most relevant cellular processes known to be affected by viral PBM-cellular PDZ interactions including the establishment of cell-cell interactions and cell polarity, the regulation of cell survival and apoptosis and the activation of the immune system. Special attention has been provided to coronavirus PBM conservation throughout evolution and to the role of the PBMs of human coronaviruses SARS-CoV and MERS-CoV in pathogenesis.Developments in chemical protein synthesis have enabled the generation of tail