When expressed as world population coverage (i.e., weighted by population size), global coverage of the final HPV dose for 2019 is estimated at 15%. There is a long way to go to meet the 2030 elimination target of 90%. In the post-COVID era attention should be paid to maintain the pace of introductions, specially ensuring the most populous countries introduce, and further improving program performance globally.Seaweed lectins are very promising biotechnological tools that also gain prominence when applied to the pharmacology field. The purpose of the present work was to isolate and characterize lectin from the red algae Amansia multifida and subsequently test it in general inflammation models. The lectin was purified by ion exchange chromatography, characterized with two-dimensional electrophoresis, automated analysis of amino acid sequences and circular dichroism spectroscopy. The pharmacological tests performed were paw edema induced by carrageenan or rapid inflammatory mediators, peritonitis induced by carrageenan and myeloperoxidase leukocyte count assays, glutathione and cytokine concentration. Our results have identified a 30 KDa molecular weight protein that presents a major secondary structure arranged in β-strand elements (~43%). A fragment of 20 amino acid residues was sequenced and presented low identity to the known classes of lectins from marine alga. This lectin was able to modulate inflammatory parameters such as paw edema, leukocyte migration, oxidative stress and proinflammatory cytokines. Thus, the lectin from the seaweed Amansia multifida has evident anti-inflammatory properties because it acts by reducing the formation of edema by modulating the effect of vascular mediators, migration of neutrophils, proinflammatory cytokines and oxidative stress control.Wastewater contaminated with dyes is discharged by huge amount daily, and involved many hazardous materials. Thus, this study focused on introducing low cost, ecofriendly and available removal agent (lignin-based adsorbent). Three adsorbents, APKL-4, APKL-5 and APKL-6 were obtained using gradient acid precipitation technology and used for methylene blue (MB) removal. https://www.selleckchem.com/products/ly3023414.html The samples were characterized by SEM, FT-IR and zeta potential analyzer. The results indicated that the three adsorbents exhibit significantly different adsorption behavior due to the structural differences caused by fractionation. The APKL-5 and APKL-6 have fewer hydrophilic groups in their molecules and thus have more adsorption active sites to load MB molecules. A pore structure inside of APKL-5 molecules is form in acid fractionation, which allows it to carry more MB molecules. The adsorption capacity of APKL-5 increased 3.8 times (from 345 to 1310 mg g-1) in the alkaline solution which showing excellent pH responsiveness. This paper presents a new promising approach for preparing high efficiency, low cost and eco-friendly adsorbents and builds a foundation for developing further applications of lignin-based adsorbents.Green chemistry or in other words "green world" is referred to a sustainable environment using biocompatible, biodegradable, renewable, economical, and simple materials, and methods. Without any exaggeration, the exceptional chemical and physical properties of ZnO bionanocomposites beside various utilizations, make it vital materials in research and green chemistry field. Biocompatible ZnO nanoparticles with fascinating antimicrobial, physicochemical, as well as photocatalytic performance could be applied as a prominent candidate to reinforce diverse biopolymer matrixes, for instance, chitosan, starch, cellulose, gelatin, alginate, poly(hydroxyalkanoates), carrageenan, and so on. With a combination of advantageous properties of these materials, they could be illustrated specific utilizations in different areas. In this regard, the following context focuses on highlighting the recent achievements of this category of material on three important and widely used scopes eco-friendly food packaging, biomedical specially wound dressings, and water remediation technologies. Oncogenic Kras induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of Kras , thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown. A mouse model of inflammation-accelerated Kras -driven early pancreatic carcinogenesis was used. Rptor, Rictor, and Arpc4 (actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the actin-related protein (Arp) 2/3 complex, respectively. We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote Kras -driven ADM in mice and invitrorly pancreatic carcinogenesis by promoting Arp2/3 complex function. The role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation. Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation.