73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 172 × improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation.Embodiment is the percept that something not originally belonging to the self becomes part of the body. Feeling embodiment for a prosthesis may counteract amputees' altered image of the body and increase prosthesis acceptability. Prosthesis embodiment has been studied longitudinally in an amputee receiving feedback through intraneural and perineural multichannel electrodes implanted in her stump. Three factors-invasive (vs non-invasive) stimulation, training, and anthropomorphism-have been tested through two multisensory integration tasks visuo-tactile integration (VTI) and crossing-hand effect in temporal order judgment (TOJ), the former more sensible to an extension of a safe margin around the body and the latter to action-oriented remapping. Results from the amputee participant were compared with the ones from healthy controls. Testing the participant with intraneural stimulation produced an extension of peripersonal space, a sign of prosthesis embodiment. One-month training extended the peripersonal space selectively on the side wearing the prostheses. More and less-anthropomorphic prostheses benefited of intraneural feedback and extended the peripersonal space. However, the worsening of TOJ performance following arm crossing was present only wearing the more trained, despite less anthropomorphic, prosthesis, suggesting that training was critical for our participant to achieve operative tool-like embodiment.A high-fat (HF) diet is a major predisposing factor of neuroinflammation and cognitive deficits. Recently, changes in the gut microbiota have been associated with neuroinflammation and cognitive impairment, through the gut-brain axis. Curdlan, a bacterial polysaccharide widely used as food additive, has the potential to alter the composition of the microbiota and improve the gut-brain axis. However, the effects of curdlan against HF diet-induced neuroinflammation and cognitive decline have not been investigated. We aimed to evaluate the neuroprotective effect and mechanism of dietary curdlan supplementation against the obesity-associated cognitive decline observed in mice fed a HF diet. C57Bl/6J male mice were fed with either a control, HF, or HF with curdlan supplementation diets for 7 days (acute) or 15 weeks (chronic). We found that acute curdlan supplementation prevented the gut microbial composition shift induced by HF diet. Chronic curdlan supplementation prevented cognitive declines induced by HF diet. https://www.selleckchem.com/products/mln2480.html In addition, curdlan protected against the HF diet-induced abnormities in colonic permeability, hyperendotoxemia, and colonic inflammation. Furthermore, in the prefrontal cortex (PFC) and hippocampus, curdlan mitigated microgliosis, neuroinflammation, and synaptic impairments induced by a HF diet. Thus, curdlan-as a food additive and prebiotic-can prevent cognitive deficits induced by HF diet via the colon-brain axis.The ability to preferentially stimulate different retinal pathways is an important area of research for improving visual prosthetics. Recent work has shown that different classes of retinal ganglion cells (RGCs) have distinct linear electrical input filters for low-amplitude white noise stimulation. The aim of this study is to provide a statistical framework for characterizing how RGCs respond to white-noise electrical stimulation. We used a nested family of Generalized Linear Models (GLMs) to partition neural responses into different components-progressively adding covariates to the GLM which captured non-stationarity in neural activity, a linear dependence on the stimulus, and any remaining non-linear interactions. We found that each of these components resulted in increased model performance, but that even the non-linear model left a substantial fraction of neural variability unexplained. The broad goal of this paper is to provide a much-needed theoretical framework to objectively quantify stimulus paradigms in terms of the types of neural responses that they elicit (linear vs. non-linear vs. stimulus-independent variability). In turn, this aids the prosthetic community in the search for optimal stimulus parameters that avoid indiscriminate retinal activation and adaptation caused by excessively large stimulus pulses, and avoid low fidelity responses (low signal-to-noise ratio) caused by excessively weak stimulus pulses.Genes that establish the circadian clock have differential expression with respect to solar time in central and peripheral tissues. Here, we find circadian-time-induced differential expression in a large number of genes not associated with circadian rhythms in two brain regions lacking overt circadian function the dorsal vagal complex (DVC) and the central nucleus of the amygdala (CeA). These regions primarily engage in autonomic, homeostatic, and emotional regulation. However, we find striking diurnal shifts in gene expression in these regions of male Sprague Dawley rats with no obvious patterns that could be attributed to function or region. These findings have implications for the design of gene expression studies as well as for the potential effects of xenobiotics on these regions that regulate autonomic and emotional states.Introduction Metabolic brain network analysis based on graph theory using FDG PET imaging is potentially useful for investigating brain activity alternation due to metabolism changes in different stages of Alzheimer's disease (AD). Most studies on metabolic network construction have been based on group data. Here a novel approach in building an individual metabolic network was proposed to investigate individual metabolic network abnormalities. Method First, a weighting matrix was calculated based on the interregional effect size difference of mean uptake between a single subject and average normal controls (NCs). Then the weighting matrix for a single subject was multiplied by a group-based connectivity matrix from an NC cohort. To study the performance of the proposed individual metabolic network, inter- and intra-hemispheric connectivity patterns in the groups of NC, sMCI (stable mild cognitive impairment), pMCI (progressive mild cognitive impairment), and AD using the proposed individual metabolic network were constructed and compared with those from the group-based results.