https://www.selleckchem.com/products/Romidepsin-FK228.html Our results open the door to the development of stochastic models of beach, dune, and barrier dynamics, as well as a better understanding of wave-driven nuisance flooding.Hippocampal cells are central to spatial and predictive representations, and experience replays by place cells are crucial for learning and memory. Nonetheless, how hippocampal replay patterns dynamically change during the learning process remains to be elucidated. Here, we designed a spatial task in which rats learned a new behavioral trajectory for reward. We found that as rats updated their behavioral strategies for a novel salient location, hippocampal cell ensembles increased theta-sequences and sharp wave ripple-associated synchronous spikes that preferentially replayed salient locations and reward-related contexts in reverse order. The directionality and contents of the replays progressively varied with learning, including an optimized path that had never been exploited by the animals, suggesting prioritized replays of significant experiences on a predictive map. Online feedback blockade of sharp wave ripples during a learning process inhibited stabilizing optimized behavior. These results implicate learning-associated experience replays that act to learn and reinforce specific behavioral strategies.Rivers carry the dissolved and solid products of silicate mineral weathering, a process that removes [Formula see text] from the atmosphere and provides a key negative climate feedback over geological timescales. Here we show that, in some river systems, a reactive exchange pool on river suspended particulate matter, bonded weakly to mineral surfaces, increases the mobile cation flux by 50%. The chemistry of both river waters and the exchange pool demonstrates exchange equilibrium, confirmed by Sr isotopes. Global silicate weathering fluxes are calculated based on riverine dissolved sodium (Na+) from silicate minerals. The large exchange