The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus). First, we acclimated lizards to one of 4 treatments 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.The aim of this study was to identify novel genetic markers related to coronary artery disease (CAD) using a whole-exome sequencing (WES) approach and determine any associations between the selected gene polymorphisms and CAD prevalence. https://www.selleckchem.com/products/sirtinol.html CUBN, HNF1A and LIPC gene polymorphisms related to CAD susceptibility were identified using WES screening. Possible associations between the five gene polymorphisms and CAD susceptibility were examined in 452 CAD patients and 421 control subjects. Multivariate logistic regression analyses indicated that the CUBN rs2291521GA and HNF1A rs55783344CT genotypes were associated with CAD (GG vs. GA; adjusted odds ratio [AOR] = 1.530; 95% confidence interval [CI] 1.113-2.103; P = 0.002 and CC vs. CT; AOR = 1.512; 95% CI 1.119-2.045; P = 0.007, respectively). The CUBN rs2291521GA and HNF1A rs55783344CT genotype combinations exhibited a stronger association with CAD risk (AOR = 2.622; 95% CI 1.518-4.526; P = 0.001). Gene-environment combinatorial analyses indicated that the CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotype combination and several clinical factors (fasting blood sugar (FBS), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels) were associated with increased CAD risk. The CUBN rs2291521GA, HNF1A rs55783344CT, and LIPC rs17269397AA genotypes in conjunction with abnormally elevated cholesterol levels increase the risk of developing CAD. This exploratory study suggests that polymorphisms in the CUBN, HNF1A, and LIPC genes can be useful biomarkers for CAD diagnosis and treatment.Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.The responses of visual neurons, as well as visual perception phenomena in general, are highly nonlinear functions of the visual input, while most vision models are grounded on the notion of a linear receptive field (RF). The linear RF has a number of inherent problems it changes with the input, it presupposes a set of basis functions for the visual system, and it conflicts with recent studies on dendritic computations. Here we propose to model the RF in a nonlinear manner, introducing the intrinsically nonlinear receptive field (INRF). Apart from being more physiologically plausible and embodying the efficient representation principle, the INRF has a key property of wide-ranging implications for several vision science phenomena where a linear RF must vary with the input in order to predict responses, the INRF can remain constant under different stimuli. We also prove that Artificial Neural Networks with INRF modules instead of linear filters have a remarkably improved performance and better emulate basic human perception. Our results suggest a change of paradigm for vision science as well as for artificial intelligence.Bioinsecticides based on Bacillus thuringiensis (Bt) spores and toxins are increasingly popular alternative solutions to control insect pests, with potential impact of their accumulation in the environment on non-target organisms. Here, we tested the effects of chronic exposure to commercial Bt formulations (Bt var. kurstaki and israelensis) on eight non-target Drosophila species present in Bt-treated areas, including D. melanogaster (four strains). Doses up to those recommended for field application (~ 106 Colony Forming Unit (CFU)/g fly medium) did not impact fly development, while no fly emerged at ≥ 1000-fold this dose. Doses between 10- to 100-fold the recommended one increased developmental time and decreased adult emergence rates in a dose-dependent manner, with species-and strain-specific effect amplitudes. Focusing on D. melanogaster, development alterations were due to instar-dependent larval mortality, and the longevity and offspring number of adult flies exposed to bioinsecticide throughout their development were moderately influenced.